
EDA Simulator Link™ IN 2
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

EDA Simulator Link™ IN User’s Guide

© COPYRIGHT 2006–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2006 Online only New for Version 1 (Release 2006b+)
March 2007 Online only Updated for Version 2.0 (Release 2007a)
September 2007 Online only Updated for Version 2.1 (Release 2007b)
March 2008 Online only Updated for Version 2.2 (Release 2008a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Getting Started

1
Product Overview . 1-3

Integration with Other Products . 1-3
Linking with MATLAB and the HDL Simulator 1-5
Linking with Simulink and the HDL Simulator 1-7
Communicating with MATLAB or Simulink and the HDL

Simulator . 1-8

Requirements . 1-10
What You Need to Know . 1-10
Required Products . 1-10

Setting Up Your Environment for the EDA Simulator
Link™ IN Software . 1-13
Installing the Link Software . 1-13
Installing Related Application Software 1-13
Setting Up the HDL Simulator for Use with the Link

Software . 1-13
Using the EDA Simulator Link™ IN Libraries 1-19

Starting the HDL Simulator . 1-24
Starting Cadence Incisive or NC simulator from

MATLAB . 1-24
Starting the Incisive HDL Simulator from a Shell 1-25

Workflow for Using the EDA Simulator Link™ IN
Software with MATLAB® Software 1-26

Workflow for Using the EDA Simulator Link™ IN
Software with Simulink® Software 1-27

Learning More About the EDA Simulator Link™ IN
Software . 1-28
Documentation Overview . 1-28

iii

Online Help . 1-29
Demos and Tutorials . 1-29

Linking MATLAB® to Incisive® Simulators

2
MATLAB®-Incisive® Workflow . 2-2

Coding an EDA Simulator Link™ IN MATLAB®

Application . 2-4
Overview . 2-4
Process for Coding an EDA Simulator Link™ IN MATLAB

Application . 2-5
Coding HDL Modules for MATLAB Verification 2-7
Coding MATLAB Link Functions . 2-12

Associating a MATLAB® Link Function with an HDL
Module . 2-36
Overview . 2-36
Naming a MATLAB Link Function 2-36
Associating the HDL Module Component with the MATLAB

Link Function . 2-37
Specifying HDL Signal/Port and Module Paths for MATLAB

Link Sessions . 2-37
Specifying TCP/IP Values . 2-39
Scheduling Options for a Link Session 2-39

Running MATLAB® Link Sessions 2-47
Overview . 2-47
Process for Running MATLAB Link Sessions 2-47
Placing a MATLAB Test Bench or Component Function on

the MATLAB Search Path . 2-48
Starting the MATLAB Server . 2-48
Checking the MATLAB Server’s Link Status 2-50
Starting Cadence Incisive or NC Simulator for Use with

MATLAB . 2-50
Applying Stimuli with the HDL Simulator force

Command . 2-51
Running a Link Session . 2-52

iv Contents

Restarting a Link Session . 2-54
Stopping a Link Session . 2-54

Linking Simulink® to Incisive® Simulators

3
Simulink®-Incisive® Workflow . 3-2

Introduction to Cosimulation . 3-5
Creating a Hardware Model Design for Use in Simulink®

Applications . 3-5
The EDA Simulator Link™ IN HDL Cosimulation Block . . 3-7
Communicating Between the HDL Simulator and

Simulink® Software . 3-12

Preparing for Cosimulation . 3-14
Overview . 3-14
How Simulink Drives Cosimulation Signals 3-15
Representation of Simulation Time 3-15
Handling Multirate Signals . 3-22
Handling Frame-Based Signals . 3-22
Avoiding Race Conditions in HDL Simulation 3-24
Block Simulation Latency . 3-24
Interfacing with Continuous Time Signals 3-25
Setting Simulink Software Configuration Parameters 3-25
Simulink and HDL Simulator Communication Options . . . 3-27
Starting the HDL Simulator . 3-27

Incorporating Hardware Designs into a Simulink®

Model . 3-28
Overview . 3-28
Specifying HDL Signal/Port and Module Paths for

Cosimulation . 3-29
Driving Clocks, Resets, and Enables 3-31
Defining the Block Interface . 3-33
Specifying the Signal Datatypes . 3-43
Configuring the Simulink and Cadence Incisive or NC

Simulator Timing Relationship . 3-45

v

Configuring the Communication Link in the HDL
Cosimulation Block . 3-46

Specifying Pre- and Post-Simulation Tcl Commands with
HDL Cosimulation Block Parameters Dialog Box 3-49

Programmatically Controlling the Block Parameters 3-50
Adding a Value Change Dump (VCD) File 3-52

Running Cosimulation Sessions . 3-56
Starting the HDL Simulator for Use with Simulink 3-56
Determining an Available Socket Port Number 3-57
Checking the Connection Status . 3-57
Managing a Simulink Cosimulation Session 3-57

EDA Simulator Link™ IN MATLAB® Function
Reference

4

EDA Simulator Link™ IN Command Extensions
for the HDL Simulator Reference

5

EDA Simulator Link™ IN Simulink® Block
Reference

6

VHDL and Verilog Language Support

A
EDA Simulator Link™ IN VHDL and Verilog Language

Support . A-2
Mixed-Language Model Limitation A-2

vi Contents

EDA Simulator Link™ IN Machine
Configuration Requirements

B
Valid Configurations For Using the EDA Simulator

Link™ IN Software with MATLAB® Applications . . . B-2

Valid Configurations For Using the EDA Simulator
Link™ IN Software with Simulink® Software B-4

TCP/IP Socket Communication

C
Choosing TCP/IP Socket Ports . C-2

Specifying TCP/IP Values . C-5

TCP/IP Services . C-6

Race Conditions in HDL Simulators

D
Overview . D-2

Potential Race Conditions in Simulink® Link
Sessions . D-3

Potential Race Conditions in MATLAB® Link
Sessions . D-5

Further Reading . D-6

vii

Index

viii Contents

1

Getting Started

Product Overview (p. 1-3) Identifies typical applications
and expected users, lists key
product features, describes the EDA
Simulator Link™ IN cosimulation
environment, and provides an
overview of how you work with the
integrated tool environment

Requirements (p. 1-10) Describes what you need to know and
what other products are required
to use the EDA Simulator Link IN
software

Setting Up Your Environment for the
EDA Simulator Link™ IN Software
(p. 1-13)

Explains how to install and set up
the EDA Simulator Link IN software

Starting the HDL Simulator (p. 1-24) Explains and shows how to invoke
the HDL simulator so that it will
work with EDA Simulator Link IN
software

Workflow for Using the EDA
Simulator Link™ IN Software with
MATLAB® Software (p. 1-26)

Describes very basic steps for
creating MATLAB—HDL simulator
applications

1 Getting Started

Workflow for Using the EDA
Simulator Link™ IN Software with
Simulink® Software (p. 1-27)

Describes very basic steps for
creating Simulink—HDL simulator
cosimulation sessions

Learning More About the EDA
Simulator Link™ IN Software
(p. 1-28)

Identifies and explains how to gain
access to available documentation
online help, demo, and tutorial
resources

1-2

Product Overview

Product Overview

In this section...

“Integration with Other Products” on page 1-3

“Linking with MATLAB and the HDL Simulator” on page 1-5

“Linking with Simulink and the HDL Simulator” on page 1-7

“Communicating with MATLAB or Simulink and the HDL Simulator” on
page 1-8

Integration with Other Products
The EDA Simulator Link™ IN cosimulation interface integrates MathWorks™
tools into the Electronic Design Automation (EDA) workflow for field
programmable gate array (FPGA) and application-specific integrated circuit
(ASIC) development. The software provides a fast bidirectional link between
the Cadence hardware description language (HDL) simulator, Incisive®, and
The MathWorks™ MATLAB® and Simulink® products for direct hardware
design verification and cosimulation. The integration of these tools allows
users to apply each product to the tasks it does best:

• Incisive — Hardware modeling in HDL and simulation

• MATLAB — Numerical computing, algorithm development, and
visualization

• Simulink — Simulation of system-level designs and complex models

Note Incisive software may also be referred to as "the HDL simulator"
throughout this document.

The EDA Simulator Link IN software consists of MATLAB functions and
HDL simulator commands for establishing the communication links between
the HDL simulator and The MathWorks products. In addition, a library of
Simulink blocks is available for including HDL simulator designs in Simulink
models for cosimulation.

1-3

1 Getting Started

EDA Simulator Link IN software streamlines FPGA and ASIC development
by integrating tools available for

1 Developing specifications for hardware design reference models

2 Implementing a hardware design in HDL based on a reference model

3 Verifying the design against the reference design

The following figure shows how the HDL simulator and MathWorks products
fit into this hardware design scenario.

���������	
���
�

�

�

���	���������

������	
���
�

���	����	��
	��������	��������

�
�������	�������������

 �!��"
��
���	#��������
	!���$�%
&�����	����
�	!���$�%
'�������������	!���$�%

��������

��
���	#��������
		"�������
��������	&�%�
	#����

'�������������	"�������

As the figure shows, EDA Simulator Link IN software connects tools that
traditionally have been used discretely to perform specific steps in the design
process. By connecting the tools, the link simplifies verification by allowing
you to cosimulate the implementation and original specification directly. The
end result is significant time savings and the elimination of errors inherent to
manual comparison and inspection.

In addition to the preceding design scenario, EDA Simulator Link IN software
enables you to use the following:

1-4

Product Overview

• MATLAB or Simulink to create test signals and software test benches for
HDL code

• MATLAB or Simulink to provide a behavioral model for an HDL simulation

• MATLAB analysis and visualization capabilities for real-time insight into
an HDL implementation

• Simulink to translate legacy HDL descriptions into system-level views

Note You can cosimulate a module using SystemVerilog and/or SystemC
with MATLAB or Simulink using the EDA Simulator Link IN software. Write
simple wrappers around the SystemC and make sure that the SystemVerilog
cosimulation connections are to ports or signals of data types supported by the
link cosimulation interface.

Linking with MATLAB and the HDL Simulator
When linked with MATLAB, the HDL simulator functions as the client, as
the following figure shows.

 �!��"
������

���
���������
'�����

����

(��

(��

��

��

)�*����

)�������

In this scenario, a MATLAB server function waits for service requests that
it receives from an HDL simulator session. After receiving a request, the
server establishes a communication link, and invokes a specified MATLAB
function that computes data for, verifies, or visualizes the HDL module (coded
in VHDL or Verilog) that is under simulation in the HDL simulator.

After the server is running, you can start and configure the HDL simulator
or use with MATLAB with the supplied EDA Simulator Link IN function
nclaunch. Required and optional parameters allow you to specify the
following:

• Tcl commands that execute as part of startup

1-5

1 Getting Started

• A specific Incisive executable to start

• The name of an Cadence Incisive or NC simulator startup file to store the
complete startup script for future use or reference

The following figure shows how a MATLAB test bench function wraps around
and communicates with the HDL simulator during a test bench simulation
session.

���	������

(+!

 �!��"	����$���,	 -&�������

�����
��
������

(�����
��
������

��������)�������

 �!��"

���	���������

��

The following figure shows how a MATLAB component function is wrapped
around by and communicates with the HDL simulator during a component
simulation session.

1-6

Product Overview

During the configuration process, EDA Simulator Link IN software equips
the HDL simulator with a set of customized command extensions you use to
perform the following tasks:

• Load the HDL simulator with an instance of an HDL module to be tested
with MATLAB

• Begin a MATLAB test bench or component session for that instance

When you begin a specific test bench session, you specify parameters that
identify the following:

• The mode and, if appropriate, TCP/IP data necessary for connecting to a
MATLAB server

• The MATLAB function that is associated with and executes on behalf of
the HDL instance

• Timing specifications and other control data that specifies when the
module’s MATLAB function is to be called

Linking with Simulink and the HDL Simulator
When linked with Simulink, the HDL simulator functions as the server, as
shown in the following figure.

��������
'��������	���������

������
(��

(����

��

����
)�*����

)�������

In this case, the HDL simulator responds to simulation requests it receives
from cosimulation blocks in a Simulink model. You begin a cosimulation
session from Simulink. After a session is started, you can use Simulink
and the HDL simulator to monitor simulation progress and results. For
example, you might add signals to an HDL simulator Wave window to monitor
simulation timing diagrams.

Using the Block Parameters dialog for an HDL Cosimulation block, you can
configure the following:

1-7

1 Getting Started

• Block input and output ports that correspond to signals (including internal
signals) of an HDL module. You can specify sample times and fixed-point
data types for individual block output ports if desired.

• Type of communication and communication settings used for exchanging
data between the simulation tools.

• Rising-edge or falling-edge clocks to apply to your module. The period of
each clock is individually specifiable.

• Tcl commands to run before and after the simulation.

EDA Simulator Link IN software equips the HDL simulator with a set of
customized command extensions. Using the supplied command extension
hdlsimulink, you execute the HDL simulator with an instance of an HDL
module for cosimulation with Simulink. After the module is loaded, you can
start the cosimulation session from Simulink.

EDA Simulator Link IN software also includes a block for generating value
change dump (VCD) files. You can use VCD files generated with this block to
perform the following tasks:

• View Simulink simulation waveforms in your HDL simulation environment

• Compare results of multiple simulation runs, using the same or different
simulation environments

• Use as input to post-simulation analysis tools

Communicating with MATLAB or Simulink and the
HDL Simulator
The mode of communication that you use for a link between the HDL
simulator and MATLAB or Simulink depends on whether your simulation
application runs in a local, single-system configuration or in a network
configuration. If the HDL simulator and The MathWorks products can
run locally on the same system and your application requires only one
communication channel, you have the option of choosing between shared
memory and TCP/IP socket communication. Shared memory communication
provides optimal performance and is the default mode of communication.

1-8

Product Overview

TCP/IP socket mode is more versatile. You can use it for single-system and
network configurations. This option offers the greatest scalability. For more
on TCP/IP socket communication, see “TCP/IP Socket Communication”.

1-9

1 Getting Started

Requirements

In this section...

“What You Need to Know” on page 1-10

“Required Products” on page 1-10

What You Need to Know
The documentation provided with the EDA Simulator Link™ IN software
assumes users have a moderate level of prerequisite knowledge in the
following subject areas:

• Hardware design and system integration

• VHDL and/or Verilog

• Incisive® simulators

• MATLAB™

Experience with Simulink and Simulink Fixed Point software is required for
applying the Simulink component of the product.

Depending on your application, experience with the following MATLAB
toolboxes and Simulink blocksets might also be useful:

• Signal Processing Toolbox™

• Filter Design Toolbox™

• Communications Toolbox™

• Signal Processing Blockset™

• Communications Blockset™

• Video and Image Processing Blockset™

Required Products
EDA Simulator Link IN software requires the following:

1-10

Requirements

Platform Visit the EDA Simulator Link IN product
requirements page on The MathWorks
Web site for specific platforms supported
with the current release.

Application software Requires Incisive HDL Simulator, Incisive
Design Team Simulator, or Incisive
Enterprise Specman Simulator.

Visit the EDA Simulator Link IN product
requirements page on The MathWorks
Web site for specific versions supported
with the current release.

MATLAB

Application software
required for cosimulation

Simulink

Simulink Fixed Point

Fixed-Point Toolbox

1-11

http://www.mathworks.com/products/incisive/requirements.html
http://www.mathworks.com/products/incisive/requirements.html
http://www.mathworks.com/products/incisive/requirements.html
http://www.mathworks.com/products/incisive/requirements.html

1 Getting Started

Optional application
software

Communications Blockset

Signal Processing Blockset

Filter Design Toolbox

Signal Processing Toolbox

Video and Image Processing Blockset

Note Many EDA Simulator Link IN
demos require one or more of the optional
products listed.

Platform-specific software The EDA Simulator Link IN
shared libraries (liblfihdls*.so,
liblfihdlc*.so) are built using the gcc
included in the Incisive simulator platform
distribution. If you are linking your own
applications into the HDL simulator, the
recommendation is that you also build
against this gcc. See the HDL simulator
documentation for more details about how
to build and link your own applications.

1-12

Setting Up Your Environment for the EDA Simulator Link™ IN Software

Setting Up Your Environment for the EDA Simulator Link™
IN Software

In this section...

“Installing the Link Software” on page 1-13

“Installing Related Application Software” on page 1-13

“Setting Up the HDL Simulator for Use with the Link Software” on page
1-13

“Using the EDA Simulator Link™ IN Libraries” on page 1-19

Installing the Link Software
For details on how to install the EDA Simulator Link™ IN software, see the
MATLAB™ installation instructions.

Installing Related Application Software
Based on your configuration decisions and the software required for your EDA
Simulator Link IN application, identify software you need to install and where
you need to install it. For example, if you need to run multiple instances of
the link MATLAB server on different machines, you need to install MATLAB
and any applicable toolbox software on multiple systems. Each instance of
MATLAB can run only one instance of the server.

For details on how to install the HDL simulator, see the installation
instructions for that product. For information on installing MathWorks™
products, see the MATLAB installation instructions.

Setting Up the HDL Simulator for Use with the Link
Software
EDA Simulator Link IN software provides a guided set-up script (syscheckin)
for configuring your simulator. This script works whether you have installed
the link software and MATLAB on the same machine as the HDL simulator
or installed them on different machines.

1-13

1 Getting Started

The set-up script creates a configuration file containing the location of the
appropriate EDA Simulator Link IN MATLAB and Simulink libraries. You
can then include this configuration with any other calls you make using
Cadence Incisive or NC simulator ncsim from the HDL simulator. You only
need to run this script once.

Note The EDA Simulator Link IN configuration and diagnostic script works
only on UNIX and Linux. Windows users: please see instructions below.

Refer to “Using the EDA Simulator Link™ IN Libraries” on page 1-19 for the
correct link application library for your platform. Then see “Starting Cadence
Incisive or NC simulator from MATLAB” on page 1-24.

After you have created your configuration files, see .

Using the Configuration and Diagnostic Script for UNIX/Linux
sycheckin provides an easy way to configure your simulator setup to work
with the EDA Simulator Link IN software.

The following is an example of running sycheckin on a Linux 64 machine
with EDA Simulator Link IN libraries in a different location than where they
were first installed and specifying a TCP/IP connection.

Start sycheckin:

% syscheckin

**

Kernel name: Linux

Kernel release: 2.6.11.4-20a-smp

Machine: x86_64

**

The script first returns the location of the HDL simulator installation
(ncsim.exe). If it does not find an installation, you receive an error message.
Either provide the path to the installation or quit the script and install

1-14

Setting Up Your Environment for the EDA Simulator Link™ IN Software

Cadence Incisive or NC simulator. You are then prompted to accept this
installation or provide a path to another one, after which you receive a
message confirming the HDL simulator installation:

Found /hub/share/apps/HDLTools/IUS/incisive-lfi-1/glnx/tools/bin/64bit/ncsim on the path.

Press Enter to use the path we found or enter another one:

**

/hub/share/apps/HDLTools/IUS/incisive-lfi-1/glnx/tools/bin/64bit/ncsim -version

TOOL: ncsim(64) 05.70-s008

Cadence Incisive mode: 64 bits

**

Next, the script needs to know if the EDA Simulator Link IN libraries are in
the default directory (where they were first installed) or if you have moved
them to another directory. If you have the HDL simulator and MATLAB on
separate machines, move the link libraries to the Cadence Incisive or NC
simulator machine.

Select method to search for EDA Simulator Link IN libraries:

1. Use libraries installed with EDA Simulator Link IN.

2. Prompt me to specify the direct path to the libraries.

2

Enter the path to liblfihdlc_gcc32.so and liblfihdls_gcc32.so:

/tmp/lficonfig/linux64

Found /tmp/lficonfig/linux64/liblfihdlc_gcc32.so

and /tmp/lficonfig/linux64/liblfihdls_gcc32.so.

The script then runs a dependency checker to check for supporting libraries.
If any of the libraries cannot be found, you probably need to append your
environment path to find them.

**

Running dependency checker "ldd /tmp/lficonfig/linux64/liblfihdlc_gcc32.so".

Dependency checker passed.

Dependency status:

librt.so.1 => /lib64/tls/librt.so.1 (0x00002aaaaac1c000)

libpthread.so.0 => /lib64/tls/libpthread.so.0 (0x00002aaaaad24000)

libstdc++.so.5 => /usr/lib64/libstdc++.so.5 (0x00002aaaaae39000)

1-15

1 Getting Started

libm.so.6 => /lib64/tls/libm.so.6 (0x00002aaaab016000)

libgcc_s.so.1 => /devel/Ahdl/nightly/matlab/sys/os/glnxa64/libgcc_s.so.1 (0x00002aaaab16d000)

libc.so.6 => /lib64/tls/libc.so.6 (0x00002aaaab27a000)

/lib64/ld-linux-x86-64.so.2 (0x0000555555555000)

**

This next step loads the EDA Simulator Link IN libraries and compiles a test
module to verify the libraries loaded correctly.

Press Enter to load EDA Simulator Link IN or enter 'n' to skip this test:

ncvlog(64): 05.70-s008: (c) Copyright 1995-2006 Cadence Design Systems, Inc.

ncelab(64): 05.70-s008: (c) Copyright 1995-2006 Cadence Design Systems, Inc.

**

ncsim(64): 05.70-s008: (c) Copyright 1995-2006 Cadence Design Systems, Inc.

ncsim> source ../hub/share/apps/HDLTools/IUS/incisive-lfi-1/glnx/tools/inca/files/ncsimrc

ncsim> call nomatlabtb

ncsim> exit

**

EDA Simulator Link IN libraries loaded successfully.

**

Next, the script checks a TCP connection. If you choose to skip this step, the
configuration file specifies use of shared memory. Both shared memory and
socket configurations are in the configuration file; depending on your choice,
one configuration or the other is commented out.

Press Enter to check for TCP connection or enter 'n' to skip this test:

Enter an available port [5001]

Enter remote host [localhost]

Press Enter to continue

ttcp_glnx -t -p5001 localhost

1-16

Setting Up Your Environment for the EDA Simulator Link™ IN Software

Connection successful

Lastly, the script creates the configuration file, unless for some reason you
choose not to do so at this time.

**

Press Enter to Create Configuration files or 'n' to skip this step:

**

Created template files simulink24255.arg and matlab24255.arg. Inspect and modify

if necessary.

**

Diagnosis Completed

The template file names, in this example simulink24255.arg and
matlab24255.arg, have different names each time you run this script.

After the script is complete, you can leave the configuration files where they
are or move them to wherever it is convenient.

Using the Configuration and Diagnostic Script with Windows
sycheckin does not run on Windows. To use the configuration script on
Windows, create two files according to the following instructions:

1 Create a MATLAB configuration file and name it. There are no file-naming
restrictions. Enter the following text:

//Command file for MATLAB EDA Simulator Link IN.

//Loading of foreign Library, usage example: ncsim -f matlab17032.arg entity.

//You can manually change the following line to point to the correct library.

//The default location of the 32-bit Windows library is at

//MATLABROOT/toolbox/incisive/Windows32/liblfihdlc_vs05.dll.

-loadcfc /path/liblfihdlc_vs05.dll:matlabclient

//TCL wrappers for MATLAB commands

-input @proc" "nomatlabtb" "{args}" "{call" "nomatlabtb" "\$args}

-input @proc" "matlabtb" "{args}" "{call" "matlabtb" "\$args}

1-17

1 Getting Started

-input @proc" "matlabcp" "{args}" "{call" "matlabcp" "\$args}

-input @proc" "matlabtbeval" "{args}" "{call" "matlabtbeval" "\$args}

where path is the path to the particular EDA Simulator Link IN shared
library you want to invoke (in this example. See “Using the EDA Simulator
Link™ IN Libraries” on page 1-19).

The comments in the above text are optional.

2 Create a Simulink configuration file and name it. There are no file-naming
restrictions. Enter the following text:

//Command file for Simulink EDA Simulator Link IN.

//Loading of foreign Library, usage example: ncsim -f simulink17032.arg entity.

//You can manually change the following line to point to the correct library.

//For example the default location of the 32-bit Windows library is at

//MATLABROOT/toolbox/incisive/linux32/liblfihdls_vs05.dll.

//For socket connection uncomment and modify the following line:

+socket=5001 -loadvpi /path/liblfihdls_vs05.dll:simlinkserver

//For shared connection uncomment and modify the following line:

//-loadvpi /path/liblfihdls_vs05.dll:simlinkserver

Where path is the path to the particular EDA Simulator Link IN shared
library you want to invoke. See “Using the EDA Simulator Link™ IN
Libraries” on page 1-19.

Note If you are going to use a TCP/IP socket connection, first confirm that
you have an available port to put in this configuration file. Then, comment
out whichever type of communication you will not be using.

The comments in the above text are optional.

After you have finished creating the configuration files, you can leave the files
where they are or move them to another location that is convenient.

1-18

Setting Up Your Environment for the EDA Simulator Link™ IN Software

Using the EDA Simulator Link™ IN Libraries
In general, you want to use the same compiler for all libraries linked into
the same executable. The link software provides many versions of the same
library compilers that are available with the HDL simulators (usually some
version of GCC). Using the same libraries ensures compatibility with other
C++ libraries that may get linked into the HDL simulator, including SystemC
libraries.

If you have any of these conditions, choose the version of the EDA Simulator
Link IN library that matches the compiler used for that code:

• Link other third-party applications into your HDL simulator.

• Compile and link in SystemC code as part of your design or testbench.

• Write custom C/C++ applications and link them into your HDL simulator.

If you do not link any other code into your HDL simulator, you can use any
version of the supplied libraries. A default library version is understood by
the nclaunch MATLAB command.

Note EDA Simulator Link IN software supports running in 32-bit mode on
a 64-bit Solaris machine, but it does not support running on a 32-bit Solaris
platform.

Library Names
The EDA Simulator Link IN libraries are named according to the following
format:

productdir/arch/lib{product_short_name}{client_server_tag}_{compiler_tag).{libext}

where

productdir incisive

arch linux32, linux64, solaris32,
solaris64, or windows32

product_short_name lfi

1-19

1 Getting Started

client_server_tag c or s (MATLAB or Simulink)

compiler_tag gcc32, gcc33, gcc40, gcc41, spro11,
or vs05

libext dll or so

Not all combinations are supported. See “Default Libraries” on page 1-20
for valid combinations.

Default Libraries
EDA Simulator Link IN scripts fully support the use of designated default
libraries.

With the EDA Simulator Link IN software, the default library for each
platform is the version compiled using the same compiler that The MathWorks
uses to compile MATLAB and Simulink. The following table lists all the
libraries shipped with the link software. The default libraries for each
platform are in bold text.

Platform MATLAB Library Simulink Library

Linux32,
Linux64

liblfihdlc_gcc41.so
liblfihdlc_gcc32.so
liblfihdlc_gcc40.so

liblfihdls_gcc41.so
liblfihdls_gcc32.so
liblfihdls_gcc40.so

Solaris32,
Solaris64

liblfihdlc_spro11.so
liblfihdlc_gcc33.so

liblfihdls_spro11.so
liblfihdls_gcc33.so

Windows32 liblfihdlc_vs05.dll
liblfihdlc_gcc32.dll
liblfihdlc_gcc33.dll

liblfihdls_vs05.dll
liblfihdls_gcc32.dll
liblfihdls_gcc33.dll

Using an Alternative Library
You can use a different HDL-side library by specifying it explicitly using the
libfile parameter to the nclaunch MATLAB command. You should choose
the version of the library that matches the compiler and system libraries
you are using for any other C/C++ libraries linked into the HDL simulator.

1-20

Setting Up Your Environment for the EDA Simulator Link™ IN Software

Depending on the version of your HDL simulator, you may need to explicitly
set additional paths in the LD_LIBRARY_PATH environment variable.

Depending on the version of your HDL simulator, you may need to explicitly
set additional paths in the LD_LIBRARY_PATH environment variable. For
example, if you want to use a nondefault library:

1 Copy the system libraries from the MATLAB installation (found in
matlabroot/sys/os/platform) to the machine with the HDL simulator
(where matlabroot is your MATLAB installation and platform is one of the
above architecture, e.g., linux32).

2 Modify the LD_LIBRARY_PATH environment variable to add the path to
the system libraries that were copied in step 1.

Example: EDA Simulator Link IN Alternate Library Using nclaunch. In
this example, you are using the 32-bit Solaris version of IUS 5.83p2 on the
same 64-bit Solaris machine which is running MATLAB. Because you have
your own C++ application, and you are linking into ncsim which you used
SunPro 11 to compile, you are using the EDA Simulator Link IN version
compiled with SunPro 11, instead of using the default library version compiled
with GCC 3.2.3.

In MATLAB:

>> currPath = getenv('PATH');

>> currLdPath = getenv('LD_LIBRARY_PATH');

>> setenv('PATH', ['/tools/IUS-583p2/bin:' currPath]);

>> nclaunch('tclstart', { 'exec ncvhdl inverter.vhd', ...

'exec ncelab -access +rwc inverter', ...

'hdlsimulink -gui inverter' }, ...

'libfile', 'liblfihdls_spro11');

The PATH is changed to ensure we get the correct version of the HDL
simulator tools. Note that the nclaunch MATLAB command will
automatically detect the use of the 32-bit version of the HDL simulator and
use the solaris32 library directory in the EDA Simulator Link IN installation;
there is no need to specify the libdir parameter in this case.

1-21

1 Getting Started

The library resolution can be verified using ldd from within the ncsim console
GUI.

ncsim> exec ldd /path/to/liblfihdls_spro11.so

libxnet.so.1 => /lib/libxnet.so.1

librt.so.1 => /lib/librt.so.1

libm.so.2 => /lib/libm.so.2

libc.so.1 => /lib/libc.so.1

libstlport.so.1 => /tools/SUNWspro_studio11_20070319/opt/SUNWspro/lib/stlport4/libstlport.so.1

libCrun.so.1 => /usr/lib/libCrun.so.1

libaio.so.1 => /lib/libaio.so.1

libmd5.so.1 => /lib/libmd5.so.1

libm.so.1 => /lib/libm.so.1

libsocket.so.1 => /lib/libsocket.so.1

libnsl.so.1 => /lib/libnsl.so.1

libmp.so.2 => /lib/libmp.so.2

libscf.so.1 => /lib/libscf.so.1

libdoor.so.1 => /lib/libdoor.so.1

libuutil.so.1 => /lib/libuutil.so.1

/platform/SUNW,Sun-Blade-1000/lib/libc_psr.so.1

/platform/SUNW,Sun-Blade-1000/lib/libmd5_psr.so.1

Example: EDA Simulator Link IN Alternate Library Using System
Shell. This example shows how to load an Incisive simulator session by
explicitly specifying the EDA Simulator Link IN library (default or not). By
explicitly using a system shell, you can execute this example on the same
machine as MATLAB, on a different machine, and even on a machine with a
different operating system.

In this example, you are running the 64-bit Linux version of Incisive 5.83p2;
it does not matter what machine MATLAB is running on. Instead of using the
default library version compiled with GCC 3.2.3 in the Incisive distribution,
you are using the version compiled with GCC 3.4.6 in the Incisive distribution.

In a csh-compatible system shell:

csh> setenv PATH /tools/ius-583p2/lnx/tools/bin/64bit:${PATH}

csh> setenv LD_LIBRARY_PATH /tools/ius-583p2/lnx/tools/systemc/gcc/3.4.6-x86_64

/install/lib64:${LD_LIBRARY_PATH}

csh> ncvhdl inverter.vhd

1-22

Setting Up Your Environment for the EDA Simulator Link™ IN Software

csh> ncelab -access +rwc inverter

csh> ncsim -tcl -loadvpi /tools/matlab-7b/toolbox/incisive/linux64

/liblfihdlc_gcc34:matlabclient inverter.vhd

The PATH is changed to ensure we get the correct version of the Incisive tools.
Although ncsim will automatically find any GCC libs in its installations,
the LD_LIBRARY_PATH is changed to show how you might do this with a
custom installation of GCC.

You can check the proper library resolution using ldd as in the previous
example.

1-23

1 Getting Started

Starting the HDL Simulator

In this section...

“Starting Cadence Incisive or NC simulator from MATLAB” on page 1-24

“Starting the Incisive HDL Simulator from a Shell” on page 1-25

Starting Cadence Incisive or NC simulator from
MATLAB
Start Incisive® simulators directly from MATLAB® or Simulink® by calling
the MATLAB function nclaunch. This function starts and configures the HDL
simulator for use with the EDA Simulator Link™ IN software. By default, the
function starts the first version of the simulator executable (ncsim.exe) that
it finds on the system path (defined by the path variable), using a temporary
file that is overwritten each time the HDL simulator starts.

To start Cadence Incisive or NC simulator from MATLAB, enter nclaunch
at the MATLAB command prompt:

>> nclaunch

You can customize the startup file and communication mode to be used
between MATLAB or Simulink and the HDL simulator by specifying the call
to nclaunch with property name/property value pairs. Refer to nclaunch
reference documentation for specific information regarding the property
name/property value pairs.

See “nclaunch Examples” on page 1-24 for examples of using nclaunch with
various property/name value pairs and other parameters.

When you specify a communication mode using nclaunch, the function applies
the specified communication mode to all MATLAB or Simulink/Cadence
Incisive or NC simulator sessions.

nclaunch Examples
The following example changes the directory location to VHDLproj and
then calls the function nclaunch. Because the command line omits the
'hdlsimdir' and 'startupfile' properties, nclaunch creates a temporary

1-24

Starting the HDL Simulator

file. The 'tclstart' property specifies Tcl commands that load and initialize
the HDL simulator for test bench instance modsimrand.

cd VHDLproj

nclaunch('tclstart',...

'hdlsimmatlab modsimrand; matlabtb modsimrand 10 ns -socket 4449')

The following example changes the directory location to VHDLproj and then
calls the function nclaunch. Because the function call omits the 'hdlsimdir'
and 'startupfile' properties, nclaunch creates a temporary file. The
'tclstart' property specifies a Tcl command that loads the VHDL entity
parse in library work for cosimulation between nclaunch and Simulink. The
'socketsimulink' property specifies TCP/IP socket communication on the
same computer, using socket port 4449.

cd VHDLproj

nclaunch('tclstart', 'hdlsimulink work.parse', 'socketsimulink', '4449')

Starting the Incisive HDL Simulator from a Shell
To start the HDL simulator from a shell and include the EDA Simulator Link
IN libraries, you need to first run the configuration script. See “Setting Up
the HDL Simulator for Use with the Link Software” on page 1-13.

After you have the configuration files, you can start the HDL simulator from
the shell by typing:

% ncsim -f matlabconfigfile modelname

matlabconfigfile should be the name of the MATLAB configuration file you
created either with the guided script (Linux/UNIX) or by creating the file
yourself (Windows). If you are connecting to Simulink, this should be the
name of the Simulink configuration file. Either way, you must also specify
the path to the configuration file if it does not reside in the same directory as
ncsim.exe.

You can also specify any other existing configuration files you may also be
using with this call.

1-25

1 Getting Started

Workflow for Using the EDA Simulator Link™ IN Software
with MATLAB® Software

The following diagram illustrates the steps necessary to create and run a
MATLAB® test bench or component session.

This diagram assumes you have used the configuration and diagnostic script
(either UNIX/Linux or Windows) and are starting Cadence Incisive or NC
simulator outside of MATLAB software.

Note This workflow is a recommendation only. You might create, compile,
and elaborate your HDL module differently than illustrated before starting
MATLAB software. The preceding illustration is simply one possible workflow.

1-26

Workflow for Using the EDA Simulator Link™ IN Software with Simulink® Software

Workflow for Using the EDA Simulator Link™ IN Software
with Simulink® Software

This diagram assumes you are using the configuration and diagnostic script
(either UNIX/Linux or Windows) and starting Cadence Incisive or NC
simulator outside of MATLAB software.

Note This workflow is a recommendation only. You might create, compile,
and elaborate your HDL module differently than illustrated before starting
MATLAB and Simulink software. The preceding illustration is simply one
possible workflow.

1-27

1 Getting Started

Learning More About the EDA Simulator Link™ IN Software

In this section...

“Documentation Overview” on page 1-28

“Online Help” on page 1-29

“Demos and Tutorials” on page 1-29

Documentation Overview
The following documentation is available with this product.

Chapter 1, “Getting Started” Explains what the product is, the steps
for installing and setting it up, how you
might apply it to the hardware design
process, and how to gain access to product
documentation and online help. Directs you
to product demos and tutorials.

Chapter 2, “Linking
MATLAB® to Incisive®

Simulators”

Explains how to code HDL models and
MATLAB® functions for EDA Simulator
Link™ IN MATLAB applications. Provides
details on how the link interface maps HDL
data types to MATLAB data types and vice
versa. Explains how to start and control
HDL simulator and MATLAB test bench
and component sessions.

Chapter 3, “Linking
Simulink® to Incisive®

Simulators”

Explains how to use the HDL simulator and
Simulink for cosimulation modeling.

Chapter 4, “EDA Simulator
Link™ IN MATLAB®

Function Reference”

Describes EDA Simulator Link IN functions
for use with MATLAB.

Chapter 5, “EDA Simulator
Link™ IN Command
Extensions for the HDL
Simulator Reference”

Describes EDA Simulator Link IN
commands for use with the HDL simulator.

1-28

Learning More About the EDA Simulator Link™ IN Software

Chapter 6, “EDA Simulator
Link™ IN Simulink® Block
Reference”

Describes EDA Simulator Link IN blocks
for use with Simulink.

Appendix A, “VHDL and
Verilog Language Support”

Provides an overview of how these
languages are supported by EDA Simulator
Link IN

Appendix B, “EDA Simulator
Link™ IN Machine
Configuration Requirements”

Explains the machine configurations
permissible when linking the HDL
simulator to MATLAB or Simulink

Appendix C, “TCP/IP Socket
Communication”

Provides information for choosing TCP/IP
socket ports.

Appendix D, “Race Conditions
in HDL Simulators”

Describes ways to avoid race conditions in
hardware cosimulations with MATLAB and
Simulink

Online Help
The following online help is available:

• Online help in the MATLAB Help browser. Click the EDA Simulator Link
IN product link in the browser’s Contents.

• M-help for EDA Simulator Link IN MATLAB functions and HDL simulator
commands. This help is accessible with the MATLAB doc and help
commands. For example, enter the command

doc hdldaemon

or

help hdldaemon

at the MATLAB command prompt.

• Block reference pages accessible through the Simulink interface.

Demos and Tutorials
The EDA Simulator Link IN software provides demos and tutorials to help
you get started.

1-29

1 Getting Started

The demos give you a quick view of the product’s capabilities and examples
of how you might apply the product. You can run them with limited product
exposure. You can find the EDA Simulator Link IN demos with the online
documentation. To access demos, type at the MATLAB command prompt:

>> demos

Select Links and Targets > EDA Simulator Link™ IN from the
navigational pane.

1-30

2

Linking MATLAB® to
Incisive® Simulators

MATLAB®-Incisive® Workflow
(p. 2-2)

Provides a high-level view of the
steps involved in coding and running
MATLAB functions for use with the
EDA Simulator Link™ IN interface.

Coding an EDA Simulator Link™ IN
MATLAB® Application (p. 2-4)

Explains how to code HDL modules
and MATLAB functions for use with
EDA Simulator Link IN software.
Provides details on how the EDA
Simulator Link IN interface maps
HDL data types to MATLAB data
types and vice versa.

Associating a MATLAB® Link
Function with an HDL Module
(p. 2-36)

Describes scheduling and
communications options for a
MATLAB link session with Cadence
Incisive or NC simulator.

Running MATLAB® Link Sessions
(p. 2-47)

Explains how to start and control
Cadence Incisive or NC simulator
and MATLAB link sessions.

2 Linking MATLAB® to Incisive® Simulators

MATLAB®-Incisive® Workflow
The following table lists the steps necessary to create and run a MATLAB®

test bench or component session.

In MATLAB... In Cadence Incisive or NC simulator...

1 Start the MATLAB application and invoke
the Incisive® simulator (see “Starting the
HDL Simulator” on page 1-24)

2 Create the HDL model.

3 Compile and elaborate the HDL model.

4 Load elaborated HDL model with EDA
Simulator Link™ IN libraries. See “Loading
an HDL Design for Verification” on page
2-12.

2-2

MATLAB®-Incisive® Workflow

In MATLAB... In Cadence Incisive or NC simulator...

5 Create test bench or component function
(see “Coding an EDA Simulator Link™ IN
MATLAB® Application” on page 2-4).

6 Start the server. See “Starting the MATLAB
Server” on page 2-48.

7 Use matlabcp, matlabtb, or matlabtbeval
to associate the function you wrote in step 5
with a module of the loaded model currently
in the HDL simulator (see “Associating the
HDL Module Component with the MATLAB
Link Function” on page 2-37).
For additional scheduling and
communication options, see “Scheduling
Options for a Link Session” on page 2-39.
See also the reference pages for matlabcp,
matlabtb, and matlabtbeval.

8 Run the simulation.

9 Disconnect the session by using nomatlabtb.

2-3

2 Linking MATLAB® to Incisive® Simulators

Coding an EDA Simulator Link™ IN MATLAB® Application

In this section...

“Overview” on page 2-4

“Process for Coding an EDA Simulator Link™ IN MATLAB Application”
on page 2-5

“Coding HDL Modules for MATLAB Verification” on page 2-7

“Coding MATLAB Link Functions” on page 2-12

Overview
The EDA Simulator Link™ IN software provides a means for verifying and
visualizing Incisive® HDL modules within the MATLAB® environment. You
do this by coding an HDL model and a MATLAB function that can share data
with the HDL model. This chapter discusses the programming, interfacing,
and scheduling conventions for MATLAB functions that communicate with
the HDL simulator.

EDA Simulator Link IN software supports two types of MATLAB functions
that interface to HDL modules:

• MATLAB test bench functions let you verify the performance of the HDL
model, or of components within the model. A test bench function drives
values onto signals connected to input ports of an HDL design under test,
and receives signal values from the output ports of the module.

The syntax of a MATLAB test bench function is

function [iport, tnext] = MyFunctionName(oport, tnow, portinfo)

• MATLAB component functions simulate the behavior of components in the
HDL model. A stub module (providing port definitions only) in the HDL
model passes its input signals to the MATLAB component function. The
MATLAB component processes this data and returns the results to the
outputs of the stub module. A MATLAB component typically provides some
functionality (such as a filter) that is not yet implemented in the HDL code.

The syntax of a MATLAB component function is

2-4

Coding an EDA Simulator Link™ IN MATLAB® Application

function [oport, tnext] = MyFunctionName(iport, tnow, portinfo)

These two types of MATLAB functions are referred to collectively as MATLAB
link functions, and a test bench or component session may be referred to
as a MATLAB link session.

The programming, interfacing, and scheduling conventions for test bench
functions and MATLAB component functions are almost identical. Most of this
chapter focuses on test bench functions, but in general all operations can be
performed on and with both link functions. The test bench section is followed
by a discussion of MATLAB component functions and how to use them.

Refer to Appendix B, “EDA Simulator Link™ IN Machine Configuration
Requirements” for valid machine configurations.

Process for Coding an EDA Simulator Link™ IN
MATLAB Application
This section provides an overview of the steps required to develop an HDL
model for use with MATLAB and the EDA Simulator Link IN software. To
program the HDL component of an EDA Simulator Link IN application,

1 Code the HDL model for MATLAB verification (see “Coding HDL Modules
for MATLAB Verification” on page 2-7).

2 Compile the HDL model (see “Compiling and Debugging the HDL Model”
on page 2-11).

3 Code the required MATLAB test bench or MATLAB component functions
(see “Coding MATLAB Link Functions” on page 2-12).

4 Place the MATLAB functions on the MATLAB search path

The following figure shows how a MATLAB function wraps around and
communicates with the HDL simulator during a test bench simulation session.

2-5

2 Linking MATLAB® to Incisive® Simulators

���	������

(+!

 �!��"	����$���,	 -&�������

�����
��
������

(�����
��
������

��������)�������

 �!��"

���	���������

��

The following figure shows how a MATLAB component function is wrapped
around by and communicates with the HDL simulator during a component
simulation session.

When linked with MATLAB, the HDL simulator functions as the client,
MATLAB as the server. The following figure shows a multiple-client scenario
connecting to the server at TCP/IP socket port 4449.

2-6

Coding an EDA Simulator Link™ IN MATLAB® Application

���	���������
'�����

�������	���������
'�����

����
#���
.../

 �!��"
������

The MATLAB server can service multiple simultaneous HDL simulator
sessions and HDL modules. However, you should adhere to recommended
guidelines to ensure the server can track the I/O associated with each module
and session. The MATLAB server, which you start with the supplied MATLAB
function hdldaemon, waits for connection requests from instances of Cadence
Incisive or NC simulator running on the same or different computers. When
the server receives a request, it executes the specified MATLAB function
you have coded to perform tasks on behalf of a module in your HDL design.
Parameters that you specify when you start the server indicate whether the
server establishes shared memory or TCP/IP socket communication links.

Refer to Appendix B, “EDA Simulator Link™ IN Machine Configuration
Requirements” for valid machine configurations.

Coding HDL Modules for MATLAB Verification

• “Overview” on page 2-8

• “Choosing an HDL Module Name” on page 2-8

• “Specifying Port Direction Modes” on page 2-8

• “Specifying Port Data Types” on page 2-9

• “Sample VHDL Entity Definition” on page 2-10

• “Compiling and Debugging the HDL Model” on page 2-11

• “Loading an HDL Design for Verification” on page 2-12

2-7

2 Linking MATLAB® to Incisive® Simulators

Overview
The most basic element of communication in the EDA Simulator Link IN
interface is the HDL module. The interface passes all data between the HDL
simulator and MATLAB as port data. The EDA Simulator Link IN software
works with any existing HDL module. However, when coding an HDL module
that is targeted for MATLAB verification, you should consider its name, the
types of data to be shared between the two environments, and the direction
modes. The sections within this chapter cover these topics.

Choosing an HDL Module Name
Although not required, when naming the HDL module, consider choosing a
name that also can be used as a MATLAB function name. (Generally, naming
rules for VHDL or Verilog and MATLAB are compatible.) By default, EDA
Simulator Link IN software assumes that an HDL module and its simulation
function share the same name. See “Naming a MATLAB Link Function”
on page 2-36.

For details on MATLAB function-naming guidelines, see “MATLAB
Programming Tips” on files and file names in the MATLAB documentation.

Specifying Port Direction Modes
In your module statement, you must specify each port with a direction mode
(input, output, or bidirectional). The following table defines the three modes:

Use VHDL
Mode...

Use Verilog
Mode...

For Ports That...

IN input Represent signals that can be driven by
a MATLAB function

OUT output Represent signal values that are passed
to a MATLAB function

INOUT inout Represent bidirectional signals that
can be driven by or pass values to a
MATLAB function

2-8

Coding an EDA Simulator Link™ IN MATLAB® Application

Specifying Port Data Types
This section describes how to specify data types compatible with MATLAB for
ports in your HDL modules. For details on how the EDA Simulator Link IN
interface converts data types for the MATLAB environment, see “Performing
Data Type Conversions” on page 2-19.

Note If you use unsupported types, the EDA Simulator Link IN software
issues a warning and ignores the port at run-time. For example, if you define
your interface with five ports, one of which is a VHDL access port, at run-time
the interface displays a warning and your M-code sees only four ports.

Port Data Types for VHDL Entities. In your entity statement, you must
define each port that you plan to test with MATLAB with a VHDL data type
that is supported by the EDA Simulator Link IN software. The interface can
convert scalar and array data of the following VHDL types to comparable
MATLAB types:

• STD_LOGIC, STD_ULOGIC, BIT, STD_LOGIC_VECTOR, STD_ULOGIC_VECTOR,
and BIT_VECTOR

• INTEGER and NATURAL

• REAL

• TIME

• Enumerated types, including user-defined enumerated types and
CHARACTER

The interface also supports all subtypes and arrays of the preceding types.

2-9

2 Linking MATLAB® to Incisive® Simulators

Note The EDA Simulator Link IN software does not support VHDL extended
identifiers for the following components:

• Port and signal names used in cosimulation

• Enum literals when used as array indices of port and signal names used
in cosimulation

Basic identifiers for VHDL are supported.

Port Data Types for Verilog Modules. In your module definition, you
must define each port that you plan to test with MATLAB with a Verilog port
data type that is supported by the EDA Simulator Link IN software. The
interface can convert data of the following Verilog port types to comparable
MATLAB types:

• reg

• integer

• wire

Note EDA Simulator Link IN software does not support Verilog escaped
identifiers for port and signal names used in cosimulation. Simple identifiers
for Verilog are supported.

Sample VHDL Entity Definition
The sample VHDL code fragment below defines the entity decoder. By
default, the entity is associated with MATLAB test bench function decoder.

The keyword PORT marks the start of the entity’s port clause, which defines
two IN ports—isum and qsum—and three OUT ports—adj, dvalid, and odata.
The output ports drive signals to MATLAB function input ports for processing.
The input ports receive signals from the MATLAB function output ports.

Both input ports are defined as vectors consisting of five standard logic values.
The output port adj is also defined as a standard logic vector, but consists of

2-10

Coding an EDA Simulator Link™ IN MATLAB® Application

only two values. The output ports dvalid and odata are defined as scalar
standard logic ports. For information on how the EDA Simulator Link IN
interface converts data of standard logic scalar and array types for use in the
MATLAB environment, see “Performing Data Type Conversions” on page 2-19.

ENTITY decoder IS
PORT (

isum : IN std_logic_vector(4 DOWNTO 0);
qsum : IN std_logic_vector(4 DOWNTO 0);
adj : OUT std_logic_vector(1 DOWNTO 0);
dvalid : OUT std_logic;
odata : OUT std_logic);

END decoder ;

Compiling and Debugging the HDL Model
After you create or edit your HDL source files, use the HDL simulator
compiler to compile and debug the code.

The Incisive simulator allows for 1-step and 3-step processes for HDL
compilation, elaboration, and simulation. The following Incisive simulator
command compiles the Verilog file test.v:

sh> ncvlog test.v

The following Incisive simulator command compiles and elaborates the
Verilog design test.v, and then loads it for simulation, in a single step:

sh> ncverilog +gui +access+rwc +linedebug test.v

The following sequence of Incisive simulator commands performs all the same
processes in multiple steps:

sh> ncvlog -linedebug test.v
sh> ncelab -access +rwc test
sh> ncsim test

2-11

2 Linking MATLAB® to Incisive® Simulators

Note You should provide read/write access to the signals that are connecting
to the MATLAB session for cosimulation. The previous example shows
how to provide read/write access to all signals in your design. For higher
performance, you want to provide access only to those signals used in
cosimulation. See the description of the +access flag to ncverilog and the
-access argument to ncelab for details.

For more examples, see the EDA Simulator Link IN tutorials. For details
on using the Incisive compiler, see the Cadence Incisive or NC simulator
documentation.

Loading an HDL Design for Verification
After you start the HDL simulator from MATLAB with a call to nclaunch,
load an instance of an HDL module for verification with the HDL simulator
command hdlsimmatlab. At this point, it is assumed that you have coded
and compiled your HDL model as explained in “Coding HDL Modules for
MATLAB Verification” on page 2-7. Issue the HDL simulator command
hdlsimmatlab for each instance of an entity or module in your model that
you want to cosimulate. For example:

hdlsimmatlab work.osc_top

This command loads the EDA Simulator Link IN library, opens a simulation
workspace for osc_top, and displays a series of messages in the HDL
simulator command window as the simulator loads the entity (see demo for
remaining code).

Coding MATLAB Link Functions

• “Process for Coding MATLAB Link Functions” on page 2-13

• “Defining Link Functions and Link Function Parameters” on page 2-13

• “Performing Data Type Conversions” on page 2-19

• “Sample MATLAB Test Bench Function” on page 2-28

2-12

Coding an EDA Simulator Link™ IN MATLAB® Application

Process for Coding MATLAB Link Functions
When coding a MATLAB function that is to verify or visualize an HDL module
or component, you must adhere to specific coding conventions, understand
the data type conversions that occur, and program data type conversions for
operating on data and returning data to the HDL simulator.

To code a MATLAB link function that is to verify or visualize an HDL module
or component, perform the following steps:

1 Learn the syntax for a MATLAB link function (see “Defining Link
Functions and Link Function Parameters” on page 2-13).

2 Understand how EDA Simulator Link IN software converts HDL modules
data for use in the MATLAB environment (see “Performing Data Type
Conversions” on page 2-19).

3 Choose a name for the MATLAB function (see “Choosing an HDL Module
Name” on page 2-8).

4 Define expected parameters in the function definition line (see “Defining
Link Functions and Link Function Parameters” on page 2-13).

5 Determine the types of port data being passed into the function (see
“Defining Link Functions and Link Function Parameters” on page 2-13).

6 Extract and, if appropriate for the simulation, apply information received
in the portinfo structure (see “Gaining Access to and Applying Port
Information” on page 2-17).

7 Convert data for manipulation in the MATLAB environment, as necessary
(see “Converting HDL Data to Send to MATLAB” on page 2-19 or).

8 Convert data that needs to be returned to the HDL simulator (see
“Converting Data for Return to the HDL Simulator” on page 2-25).

Defining Link Functions and Link Function Parameters
The syntax of a MATLAB component function is

function [oport, tnext] = MyFunctionName(iport, tnow, portinfo)

2-13

2 Linking MATLAB® to Incisive® Simulators

The syntax of a MATLAB test bench function is

function [iport, tnext] = MyFunctionName(oport, tnow, portinfo)

Note that the input/output arguments (iport and oport) for a MATLAB
component function are the reverse of the port arguments for a MATLAB test
bench function. That is, the MATLAB component function returns signal data
to the outputs and receives data from the inputs of the associated HDL module.

Initialize the function outputs to empty values at the beginning of the function
as in the following example:

tnext = [];
oport = struct();

For more information on using tnext and tnow for simulation scheduling, see
“Scheduling Options for a Link Session” on page 2-39.

The following table describes each of the link function parameters and the
roles they play in each of the functions.

Parameter Test Bench Component

iport Output
Structure that forces (by
deposit) values onto signals
connected to input ports of the
associated HDL module.

Input
Structure that receives signal
values from the input ports
defined for the associated HDL
module at the time specified
by tnow

tnext Output, optional
Specifies the time at which
the HDL simulator schedules
the next callback to MATLAB.
tnext should be initialized
to an empty value ([]). If
tnext is not later updated, no
new entries are added to the
simulation schedule.

Output, optional
Same as test bench

2-14

Coding an EDA Simulator Link™ IN MATLAB® Application

Parameter Test Bench Component

oport Input
Structure that receives signal
values from the output ports
defined for the associated HDL
module at the time specified
by tnow

Output
Structure that forces (by
deposit) values onto signals
connected to output ports of
the associated HDL module.

tnow Input
Receives the simulation
time at which the MATLAB
function is called. By default,
time is represented in seconds.
For more information see
“Scheduling Options for a Link
Session” on page 2-39.

Same as test bench

portinfo Input
For the first call to the
function only (at the start of
the simulation) , portinfo
receives a structure whose
fields describe the ports
defined for the associated
HDL module. For each
port, the portinfo structure
passes information such as
the port’s type, direction,
and size. You can use the
port information to create a
generic MATLAB function that
operates differently depending
on the port information
supplied at startup. For more
information on port data,
see “Gaining Access to and
Applying Port Information” on
page 2-17.

Same as test bench

2-15

2 Linking MATLAB® to Incisive® Simulators

Note When importing VHDL signals, signal names in iport, oport, and
portinfo are returned in all capitals.

Oscfilter Function Example. The following code is the function definition
of the oscfilter MATLAB component function.

function [oport,tnext] = oscfilter(iport, tnow, portinfo)

Note that the function name oscfilter, differs from the entity name
u_osc_filter. Therefore, the component function name must be passed
in explicitly to the matlabcp command that connects the function to the
associated HDL instance using the -mfunc parameter.

The function definition specifies all required input and output parameters, as
listed below.

oport Forces (by deposit) values onto the signals connected to the
entity’s output ports, filter1x_out, filter4x_out and
filter8x_out.

tnext Specifies a time value that indicates when the HDL simulator
will execute the next callback to the MATLAB function.

iport Receives HDL signal values from the entity’s input port,
osc_in.

tnow Receives the current simulation time.

portinfo For the first call to the function, receives a structure that
describes the ports defined for the entity.

The following figure shows the relationship between the HDL entity’s ports
and the MATLAB function’s iport and oport parameters.

2-16

Coding an EDA Simulator Link™ IN MATLAB® Application

Gaining Access to and Applying Port Information. EDA Simulator Link
IN software passes information about the entity or module under test in the
portinfo structure. The portinfo structure is passed as the third argument
to the function. It is passed only in the first call to your MATLAB function.
The information passed in the portinfo structure is useful for validating
the entity or module under simulation. The information is supplied in three
fields, as indicated below. The content of these fields depends on the type of
ports defined for the VHDL entity or Verilog module.

portinfo.field1.field2.field3

The following table lists possible values for each field and identifies the port
types for which the values apply.

HDL Port Information

Field... Can Contain... Which... And Applies to...

in Indicates the port is an input
port

All port types

out Indicates the port is an output
port

All port types

inout Indicates the port is a
bidirectional port

All port types

field1

tscale Indicates the simulator
resolution limit in seconds as
specified in the HDL simulator

All types

field2 portname Is the name of the port All port types

2-17

2 Linking MATLAB® to Incisive® Simulators

HDL Port Information (Continued)

Field... Can Contain... Which... And Applies to...

type Identifies the port type

For VHDL: integer, real,
time, or enum

For Verilog: 'verilog_logic'
identifies port types reg, wire,
integer

All port types

right (VHDL
only)

The VHDL RIGHT attribute VHDL integer, natural, or
positive port types

field3

left (VHDL
only)

The VHDL LEFT attribute VHDL integer, natural, or
positive port types

size VHDL: The size of the matrix
containing the data

Verilog: The size of the bit
vector containing the data

All port types

label VHDL: A character literal or
label

Verilog: the string '01ZX'

VHDL: Enumerated types,
including predefined
types BIT, STD_LOGIC,
STD_ULOGIC, BIT_VECTOR,
and STD_LOGIC_VECTOR

Verilog: All port types

The first call to the MATLAB function has three arguments including the
portinfo structure. Checking the number of arguments is one way that you
can ensure that portinfo was passed. For example:

if(nargin ==3)
tscale = portinfo.tscale;

end

2-18

Coding an EDA Simulator Link™ IN MATLAB® Application

Performing Data Type Conversions
To successfully use the EDA Simulator Link IN software with the HDL
simulator and MATLAB or Simulink, you need to understand the data type
conversions that the EDA Simulator Link IN software performs to transmit
and receive data between HDL modules and the MATLAB environment.

Converting HDL Data to Send to MATLAB. If your Cadence Incisive or NC
simulator application needs to send HDL data to a MATLAB function, it may
be necessary for you to first convert the data to a type supported by MATLAB
and the EDA Simulator Link IN software.

To program a MATLAB function for an HDL model, you must understand the
type conversions required by your application. You may also need to handle
differences between the array indexing conventions used by the HDL you are
using and MATLAB (see section below).

The data types of arguments passed in to the function determine the following:

• The types of conversions required before data is manipulated

• The types of conversions required to return data to the HDL simulator

The following table summarizes how the EDA Simulator Link IN software
converts supported VHDL data types to MATLAB types based on whether
the type is scalar or array.

VHDL-to-MATLAB Data Type Conversions

VHDL Types... As Scalar Converts to... As Array Converts to...

STD_LOGIC, STD_ULOGIC, and
BIT

A character that matches
the character literal for the
desired logic state.

STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED, and
UNSIGNED

A column vector of characters (as
defined in VHDL Conversions
for the HDL Simulator on page
2-25) with one bit per character.

2-19

2 Linking MATLAB® to Incisive® Simulators

VHDL-to-MATLAB Data Type Conversions (Continued)

VHDL Types... As Scalar Converts to... As Array Converts to...

Arrays of STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED, and
UNSIGNED

An array of characters (as
defined above) with a size that
is equivalent to the VHDL port
size.

INTEGER and NATURAL Type int32. Arrays of type int32 with a size
that is equivalent to the VHDL
port size.

REAL Type double. Arrays of type double with a
size that is equivalent to the
VHDL port size.

2-20

Coding an EDA Simulator Link™ IN MATLAB® Application

VHDL-to-MATLAB Data Type Conversions (Continued)

VHDL Types... As Scalar Converts to... As Array Converts to...

TIME Type double for time values
in seconds and type int64
for values representing
simulator time increments
(see the description of the
'time' option in “Starting
the MATLAB Server” on
page 2-48).

Arrays of type double or int64
with a size that is equivalent to
the VHDL port size.

Enumerated types Character array (string)
that contains the MATLAB
representation of a VHDL
label or character literal.
For example, the label high
converts to 'high' and
the character literal 'c'
converts to '''c'''.

Cell array of strings with
each element equal to a label
for the defined enumerated
type. Each element is the
MATLAB representation of
a VHDL label or character
literal. For example, the
vector (one, '2', three)
converts to the column vector
['one'; '''2'''; 'three'].
A user-defined enumerated type
that contains only character
literals, converts to a vector or
array of characters as indicated
for the types STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED, and
UNSIGNED.

The following table summarizes how the EDA Simulator Link IN software
converts supported Verilog data types to MATLAB types. Only scalar data
types are supported for Verilog.

2-21

2 Linking MATLAB® to Incisive® Simulators

Verilog-to-MATLAB Data Type Conversions

Verilog Types... Converts to...

wire, reg A character or a column vector of
characters that matches the character
literal for the desired logic states
(bits).

integer A 32-element column vector of
characters that matches the character
literal for the desired logic states
(bits).

Array Indexing Differences Between MATLAB and HDL. In
multidimensional arrays, the same underlying OS memory buffer maps to
different elements in MATLAB and the HDL simulator (this mapping only
reflects different ways the different languages offer for naming the elements
of the same array). Be careful when using matlabtb and matlabcp functions
to assign and interpret values consistently in both applications.

In HDL, a multidimensional array declared as:

type matrix_2x3x4 is array (0 to 1, 4 downto 2) of std_logic_vector(8 downto 5);

has a memory layout as follows:

bit 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

-

dim1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

dim2 4 4 4 4 3 3 3 3 2 2 2 2 4 4 4 4 3 3 3 3 2 2 2 2

dim3 8 7 6 5 8 7 6 5 8 7 6 5 8 7 6 5 8 7 6 5 8 7 6 5

This same layout corresponds to the following MATLAB 4x3x2 matrix:

bit 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

-

dim1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

dim2 1 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 2 2 2 2 3 3 3 3

dim3 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

2-22

Coding an EDA Simulator Link™ IN MATLAB® Application

Therefore, if H is the HDL array and M is the MATLAB matrix, the following
indexed values are the same:

b1 H(0,4,8) = M(1,1,1)
b2 H(0,4,7) = M(2,1,1)
b3 H(0,4,6) = M(3,1,1)
b4 H(0,4,5) = M(4,1,1)
b5 H(0,3,8) = M(1,2,1)
b6 H(0,3,7) = M(2,2,1)
...
b19 H(1,3,6) = M(3,2,2)
b20 H(1,3,5) = M(4,2,2)
b21 H(1,2,8) = M(1,3,2)
b22 H(1,2,7) = M(2,3,2)
b23 H(1,2,6) = M(3,3,2)
b24 H(1,2,5) = M(4,3,2)

You can extend this indexing to N-dimensions. In general, the dimensions—if
numbered from left to right—are reversed. The right-most dimension in HDL
corresponds to the left-most dimension in MATLAB.

Converting Data for Manipulation. Depending on how your simulation
MATLAB function uses the data it receives from the HDL simulator, the
function may need to convert data to a different type before manipulating
it. The following table lists circumstances under which such conversions
are required.

Required Data Conversions

If the Function Needs
to...

Then...

Compute numeric data
that is received as a type
other than double

Use the double function to convert the
data to type double before performing the
computation. For example:

datas(inc+1) = double(idata);

2-23

2 Linking MATLAB® to Incisive® Simulators

Required Data Conversions (Continued)

If the Function Needs
to...

Then...

Convert a standard
logic or bit vector to an
unsigned integer

Use the mvl2dec function to convert the data to
an unsigned decimal value. For example:

uval = mvl2dec(oport.val')

This example assumes the standard logic or bit
vector is composed of the character literals '1'
and '0' only. These are the only two values that
can be converted to an integer equivalent.

The mvl2dec function converts the binary data
that the MATLAB function receives from the
entity’s osc_in port to unsigned decimal values
that MATLAB can compute.

See mvl2dec for more information on this
function.

Convert a standard logic
or bit vector to a signed
integer

Use the following application of the mvl2dec
function to convert the data to a signed decimal
value. For example:

suval = mvl2dec(oport.val')-2^length(oport.val);

This example assumes the standard logic or bit
vector is composed of the character literals '1'
and '0' only. These are the only two values that
can be converted to an integer equivalent.

Examples

The following code excerpt illustrates data type conversion of data passed
in to a callback:

InDelayLine(1) = InputScale * mvl2dec(iport.osc_in')/2^(Nbits-1);

2-24

Coding an EDA Simulator Link™ IN MATLAB® Application

This example tests port values of VHDL type STD_LOGIC and
STD_LOGIC_VECTOR by using the all function as follows:

all(oport.val == '1' | oport.val
== '0')

This example returns True if all elements are '1' or '0'.

Converting Data for Return to the HDL Simulator. If your simulation
MATLAB function needs to return data to the HDL simulator, it may be
necessary for you to first convert the data to a type supported by the EDA
Simulator Link IN software. The following tables list circumstances under
which such conversions are required for VHDL and Verilog.

VHDL Conversions for the HDL Simulator

To Return Data to an IN
Port of Type...

Then...

STD_LOGIC, STD_ULOGIC, or
BIT

Declare the data as a character that matches the character literal
for the desired logic state. For STD_LOGIC and STD_ULOGIC, the
character can be 'U', 'X', '0', '1', 'Z', 'W', 'L', 'H', or '-'.
For BIT, the character can be '0' or '1'. For example:

iport.s1 = 'X'; %STD_LOGIC
iport.bit = '1'; %BIT

STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED, or
UNSIGNED

Declare the data as a column vector or row vector of characters
(as defined above) with one bit per character. For example:

iport.s1v = 'X10ZZ'; %STD_LOGIC_VECTOR

iport.bitv = '10100'; %BIT_VECTOR

iport.uns = dec2mvl(10,8); %UNSIGNED, 8 bits

Array of STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED, or
UNSIGNED

Declare the data as an array of type character with a size
that is equivalent to the VHDL port size. See “Array Indexing
Differences Between MATLAB and HDL” on page 2-22.

2-25

2 Linking MATLAB® to Incisive® Simulators

VHDL Conversions for the HDL Simulator (Continued)

To Return Data to an IN
Port of Type...

Then...

INTEGER or NATURAL Declare the data as an array of type int32 with a size that is
equivalent to the VHDL array size. Alternatively, convert the
data to an array of type int32 with the MATLAB int32 function
before returning it. Be sure to limit the data to values with the
range of the VHDL type. If necessary, check the right and left
fields of the portinfo structure. For example:

iport.int = int32(1:10)';

REAL Declare the data as an array of type double with a size that is
equivalent to the VHDL port size. For example:

iport.dbl = ones(2,2);

TIME Declare a VHDL TIME value as time in seconds, using type
double, or as an integer of simulator time increments, using type
int64. You can use the two formats interchangeably and what
you specify does not depend on the hdldaemon 'time' option (see
“Starting the MATLAB Server” on page 2-48), which applies to IN
ports only. Declare an array of TIME values by using a MATLAB
array of identical size and shape. All elements of a given port
are restricted to time in seconds (type double) or simulator
increments (type int64), but otherwise you can mix the formats.
For example:

iport.t1 = int64(1:10)'; %Simulator time
%increments

iport.t2 = 1e-9; %1 nsec

2-26

Coding an EDA Simulator Link™ IN MATLAB® Application

VHDL Conversions for the HDL Simulator (Continued)

To Return Data to an IN
Port of Type...

Then...

Enumerated types Declare the data as a string for scalar ports or a cell array of
strings for array ports with each element equal to a label for the
defined enumerated type. The 'label' field of the portinfo
structure lists all valid labels (see “Gaining Access to and
Applying Port Information” on page 2-17). Except for character
literals, labels are not case sensitive. In general, you should
specify character literals completely, including the single quotes,
as shown in the first example below.

iport.char = {'''A''', '''B'''}; %Character

%literal

iport.udef = 'mylabel'; %User-defined label

Character array for standard
logic or bit representation

Use the dec2mvl function to convert the integer. For example:

oport.slva =dec2mvl([23 99],8)';

This example converts two integers to a 2-element array of
standard logic vectors consisting of 8 bits.

Verilog Conversions for the HDL Simulator

To Return Data to
an input Port of
Type...

Then...

reg, wire Declare the data as a character or a column vector
of characters that matches the character literal for
the desired logic state ('0' or '1'). For example:

iport.bit = '1';

integer Declare the data as a 32-element column vector
of characters (as defined above) with one bit per
character.

2-27

2 Linking MATLAB® to Incisive® Simulators

Sample MATLAB Test Bench Function
This section uses a sample MATLAB function to identify sections of a
MATLAB test bench function required by the EDA Simulator Link IN
software. The full text of the code used in this sample can be seen in the
section M-Function Example: manchester_decoder.m on page 2-32.

The first step to coding a MATLAB test bench function is to understand
how the data modeled in the VHDL entity maps to data in the MATLAB
environment. The VHDL entity decoder is defined as follows:

ENTITY decoder IS
PORT (

isum : IN std_logic_vector(4 DOWNTO 0);
qsum : IN std_logic_vector(4 DOWNTO 0);
adj : OUT std_logic_vector(1 DOWNTO 0);
dvalid : OUT std_logic;
odata : OUT std_logic
);

END decoder ;

The following discussion highlights key lines of code in the definition of the
manchester_decoder MATLAB function:

1 Specify the MATLAB function name and required parameters.

The following code is the function declaration of the manchester_decoder
MATLAB function.

function [iport,tnext] = manchester_decoder(oport,tnow,portinfo)

See “Defining Link Functions and Link Function Parameters” on page 2-13.

The function declaration performs the following actions:

• Names the function. This declaration names the function
manchester_decoder, which differs from the entity name decoder.
Because the names differ, the function name must be specified explicitly
later when the entity is initialized for verification with the matlabtb
or matlabtbeval HDL simulator command. See “Naming a MATLAB
Link Function” on page 2-36.

2-28

Coding an EDA Simulator Link™ IN MATLAB® Application

• Defines required argument and return parameters. A MATLAB test
bench function must return two parameters, iport and tnext, and
pass three arguments, oport, tnow, and portinfo, and must appear
in the order shown. See “Defining Link Functions and Link Function
Parameters” on page 2-13.

Note that the function outputs must be initialized to empty values, as in
the following code example:

tnext = [];
iport = struct();

Recommended practice is to initialize the function outputs at the
beginning of the function.

The following figure shows the relationship between the entity’s ports
and the MATLAB function’s iport and oport parameters.

���
��0�,

�����	��
���� (�����	��
����

�����0����	123
�����0*���	123

�����0�
4	153
�����0
����
163
�����0�
���163

For more information on the required MATLAB link function parameters,
see “Defining Link Functions and Link Function Parameters” on page
2-13.

2 Make note of the data types of ports defined for the entity being
simulated.

The EDA Simulator Link IN software converts HDL data types to
comparable MATLAB data types and vice versa. As you develop your
MATLAB function, you must know the types of the data that it receives
from the HDL simulator and needs to return to the HDL simulator.

The VHDL entity defined for this example consists of the following ports:

2-29

2 Linking MATLAB® to Incisive® Simulators

VHDL Example Port Definitions

Port Direction Type... Converts
to/Requires
Conversion to...

isum IN STD_LOGIC_VECTOR(4 DOWNTO 0) A 5-bit column
or row vector of
characters where
each bit maps to
standard logic
character 0 or 1.

qsum IN STD_LOGIC_VECTOR(4 DOWNTO 0) A 5-bit column
or row vector of
characters where
each bit maps to
standard logic
character 0 or 1.

adj OUT STD_LOGIC_VECTOR(1 DOWNTO 0) A 2-element
column vector of
characters. Each
character matches
a corresponding
character literal
that represents
a logic state and
maps to a single
bit.

dvalid OUT STD_LOGIC A character that
matches the
character literal
representing the
logic state.

odata OUT STD_LOGIC A character that
matches the
character literal
representing the
logic state.

2-30

Coding an EDA Simulator Link™ IN MATLAB® Application

For more information on interface data type conversions, see “Performing
Data Type Conversions” on page 2-19.

3 Set up any required timing parameters.

The tnext assignment statement sets up timing parameter tnext such
that the simulator calls back the MATLAB function every nanosecond.

tnext = tnow+1e-9;

4 Convert output port data to appropriate MATLAB data types for
processing.

The following code excerpt illustrates data type conversion of output port
data.

%% Compute one row and plot
isum = isum + 1;
adj(isum) = mvl2dec(oport.adj');
data(isum) = mvl2dec([oport.dvalid oport.odata]);
.
.
.

The two calls to mvl2dec convert the binary data that the MATLAB
function receives from the entity’s output ports, adj, dvalid, and odata to
unsigned decimal values that MATLAB can compute. The function converts
the 2-bit transposed vector oport.adj to a decimal value in the range 0 to
4 and oport.dvalid and oport.odata to the decimal value 0 or 1.

“Performing Data Type Conversions” on page 2-19 provides a summary of
the types of data conversions to consider when coding simulation MATLAB
functions.

5 Convert data to be returned to the HDL simulator.

The following code excerpt illustrates data type conversion of data to be
returned to the HDL simulator.

if isum == 17
iport.isum = dec2mvl(isum,5);
iport.qsum = dec2mvl(qsum,5);

2-31

2 Linking MATLAB® to Incisive® Simulators

else
iport.isum = dec2mvl(isum,5);

end

The three calls to dec2mvl convert the decimal values computed by
MATLAB to binary data that the MATLAB function can deposit to the
entity’s input ports, isum and qsum. In each case, the function converts a
decimal value to 5-element bit vector with each bit representing a character
that maps to a character literal representing a logic state.

“Converting Data for Return to the HDL Simulator” on page 2-25 provides
a summary of the types of data conversions to consider when returning
data to the HDL simulator.

M-Function Example: manchester_decoder.m

function [iport,tnext] = manchester_decoder(oport,tnow,portinfo)

% MANCHESTER_DECODER Test bench for VHDL 'decoder'

% [IPORT,TNEXT]=MANCHESTER_DECODER(OPORT,TNOW,PORTINFO) -

% Implements a test of the VHDL decoder entity which is part

% of the Manchester receiver demo. This test bench plots

% the IQ mapping produced by the decoder.

%

% iport oport

% +-----------+

% isum -(5)->| |-(2)-> adj

% qsum -(5)->| decoder |-(1)-> dvalid

% | |-(1)-> odata

% +-----------+

%

% isum - Inphase Convolution value

% qsum - Quadrature Convolution value

% adj - Clock adjustment ('01','00','10')

% dvalid - Data validity ('1' = data is valid)

% odata - Recovered data stream

%

% Adjust = 0 (00b), generate full 16 cycle waveform

% Copyright 2003-2004 The MathWorks, Inc.

% $Revision: 1.1.4.1 $ $Date: 2007/08/31 00:55:58 $

2-32

Coding an EDA Simulator Link™ IN MATLAB® Application

persistent isum;

persistent qsum;

%persistent ga;

persistent x;

persistent y;

persistent adj;

persistent data;

global testisdone;

% This useful feature allows you to manually

% reset the plot by simply typing: >manchester_decoder

tnext = [];

iport = struct();

if nargin == 0,

isum = [];

return;

end

if exist('portinfo') == 1

isum = [];

end

tnext = tnow+1e-9;

if isempty(isum), %% First call

scale = 9;

isum = 0;

qsum = 0;

for k=1:2,

ga(k) = subplot(2,1,k);

axis([-1 17 -1 17]);

ylabel('Quadrature');

line([0 16],[8 8],'Color','r','LineStyle',':','LineWidth',1)

line([8 8],[0 16],'Color','r','LineStyle',':','LineWidth',1)

end

xlabel('Inphase');

subplot(2,1,1);

title('Clock Adjustment (adj)');

subplot(2,1,2);

title('Data with Validity');

2-33

2 Linking MATLAB® to Incisive® Simulators

iport.isum = '00000';

iport.qsum = '00000';

return;

end

% compute one row, then plot

isum = isum + 1;

adj(isum) = bin2dec(oport.adj');

data(isum) = bin2dec([oport.dvalid oport.odata]);

if isum == 17,

subplot(2,1,1);

for k=0:16,

if adj(k+1) == 0, % Bang on!

line(k,qsum,'color','k','Marker','o');

elseif adj(k+1) == 1, %

line(k,qsum,'color','r','Marker','<');

else

line(k,qsum,'color','b','Marker','>');

end

end

subplot(2,1,2);

for k=0:16,

if data(k+1) < 2, % Invalid

line(k,qsum,'color','r','Marker','X');

else

if data(k+1) == 2, %Valid and 0!

line(k,qsum,'color','g','Marker','o');

else

line(k,qsum,'color','k','Marker','.');

end

end

end

isum = 0;

qsum = qsum + 1;

if qsum == 17,

qsum = 0;

disp('done');

tnext = []; % suspend callbacks

2-34

Coding an EDA Simulator Link™ IN MATLAB® Application

testisdone = 1;

return;

end

iport.isum = dec2bin(isum,5);

iport.qsum = dec2bin(qsum,5);

else

iport.isum = dec2bin(isum,5);

end

2-35

2 Linking MATLAB® to Incisive® Simulators

Associating a MATLAB® Link Function with an HDL Module

In this section...

“Overview” on page 2-36

“Naming a MATLAB Link Function” on page 2-36

“Associating the HDL Module Component with the MATLAB Link
Function” on page 2-37

“Specifying HDL Signal/Port and Module Paths for MATLAB Link Sessions”
on page 2-37

“Specifying TCP/IP Values” on page 2-39

“Scheduling Options for a Link Session” on page 2-39

Overview
This section describes establishing a relationship between the link function
and the HDL model in the Incisive® simulator by naming the link function
(either implicitly or explicitly) and using scheduling options (action based on
a specific time or event and registering callbacks) for the MATLAB® link
session.

Naming a MATLAB Link Function
You can name and specify a MATLAB link function however you like, so long
as you adhere to MATLAB function and file naming guidelines. By default,
the EDA Simulator Link™ IN software assumes the name for a MATLAB
function matches the name of the HDL module that the function verifies or
visualizes. For example, if you name the HDL module mystdlogic, the EDA
Simulator Link IN software assumes the corresponding MATLAB function is
mystdlogic and resides in the file mystdlogic.m.

Should you name the m-function or m-file something different than the HDL
instance, you must specify the -mfunc parameter of one of the link functions
and provide the m-function name.

For details on MATLAB function naming guidelines, see "MATLAB
Programming Tips" on files and file names in the MATLAB documentation.

2-36

Associating a MATLAB® Link Function with an HDL Module

Associating the HDL Module Component with the
MATLAB Link Function
By default, the EDA Simulator Link IN software assumes the name for a
MATLAB function matches the name of the HDL module that the function
verifies or visualizes. See “Naming a MATLAB Link Function” on page 2-36.

In the Oscillator demo, the HDL model instantiates an HDL entity as the
component u_osc_filter (see osc_top.v). After the HDL simulator compiles
and loads the HDL model, an association must be formed between the
u_osc_filter component and the MATLAB component function oscfilter.
To do this, the HDL simulator command matlabcp is invoked when the
simulation is set up.

matlabcp u_osc_filter -mfunc oscfilter

The matlabcp command instructs the HDL simulator to call back the
oscfilter function when u_osc_filter executes in the simulation.

Specifying HDL Signal/Port and Module Paths for
MATLAB Link Sessions
The rules stated in this section are for signal/port and module path
specifications for MATLAB link sessions. Other specifications may work but
are not guaranteed to work in this or future releases.

In the following example,

matlabcp u_osc_filter -mfunc oscfilter

u_osc_filter is the top level component. However, if you are specifying a
subcomponent, you must follow valid module path specifications for MATLAB
link sessions.

Note HDL designs generally do have hierarchy; that is the reason for this
syntax. This is not a file name hierarchy.

2-37

2 Linking MATLAB® to Incisive® Simulators

Path Specifications for MATLAB Link Sessions with Verilog
Top Level
These path specifications rules must be followed:

• Path specification must start with a top-level module name.

• Path specification can include "." or "/" path delimiters, but cannot include
a mixture.

• The leaf module or signal must match the HDL language of the top-level
module.

The following are valid signal and module path specification examples:

top.port_or_sig
/top/sub/port_or_sig
top
top/sub
top.sub1.sub2

The following are invalid signal and module path specification examples:

top.sub/port_or_sig
:sub:port_or_sig
:
:sub

Path Specifications for MATLAB Link Sessions with VHDL Top
Level
These path specifications rules must be followed:

• Path specification may include the top-level module name but it is not
required.

• Path specification can include "." or "/" path delimiters, but cannot include
a mixture.

• The leaf module or signal must match the HDL language of the top-level
module.

The following are valid signal and module path specification examples:

2-38

Associating a MATLAB® Link Function with an HDL Module

top.port_or_sig
/sub/port_or_sig
top
top/sub
top.sub1.sub2

The following are invalid signal and module path specification examples:

top.sub/port_or_sig
:sub:port_or_sig
:
:sub

Specifying TCP/IP Values
When providing TCP/IP information for a MATLAB link function, you can
choose a TCP/IP port number or TCP/IP port alias or service name.

If the HDL simulator and MATLAB are running on the same system, the
TCP/IP specification identifies a unique TCP/IP socket port to be used for
the link. If the two applications are running on different systems, you must
specify a remote hostname or Internet address in addition to the socket
port. See Appendix C, “TCP/IP Socket Communication” for more detail in
specifying TCP/IP values.

For example,

ncsim> matlabcp u_osc_filter -mfunc oscfilter -socket 4449

A remote connection might look like this:

>matlabcp u_osc_filter -mfunc oscfilter -socket computer93:4449

or

>matlabcp u_osc_filter -mfunc oscfilter -socket 4449@computer23

Scheduling Options for a Link Session
There are two ways to schedule the invocation of a link function:

2-39

2 Linking MATLAB® to Incisive® Simulators

• Using the arguments to the matlabcp or matlabtb functions (“Scheduling
Link Functions Using Link Function Parameters” on page 2-40)

• Inside the MATLAB m-function using the tnext parameter (“Scheduling
Link Functions Using the tnext Parameter of an M-Function” on page 2-44)

You can schedule a MATLAB simulation function to execute under any of the
following conditions:

• At a time that the MATLAB function passes to the HDL simulator with
the tnext parameter

• Based on a time specification that can include discrete time values, repeat
intervals, and a stop time

• When a specified signal experiences a rising edge—changes from '0' to '1'

• When a specified signal experiences a falling edge—changes from '1' to '0'

• Based on a sensitivity list—when a specified signal changes state

Decide on a combination of options that best meet your test bench application
requirements. For details on using the tnext parameter and information on
setting other scheduling parameters, see “Scheduling Link Functions Using
the tnext Parameter of an M-Function” on page 2-44.

Scheduling Link Functions Using Link Function Parameters
By default, the EDA Simulator Link IN software invokes a MATLAB test
bench function once (when time equals 0). If you want to apply more control
and execute the MATLAB function more than once, decide on scheduling
options that specify when and how often the EDA Simulator Link IN software
is to invoke the relevant MATLAB function. Depending on your choices, you
may need to modify the function or specify specific arguments when you begin
a MATLAB test bench session with the matlabtb function.

In addition, the matlabtb function can include parameters that control when
the MATLAB function executes.

You must specify at least one instance of a VHDL entity or Verilog module
in your HDL model. By default, the command establishes a shared memory
communication link and associates the specified instance with a MATLAB

2-40

Associating a MATLAB® Link Function with an HDL Module

function that has the same name as the instance. See “Associating the HDL
Module Component with the MATLAB Link Function” on page 2-37.

The matlabtbeval function executes the MATLAB function immediately,
while matlabtb provides several options for scheduling MATLAB function
execution. The following table lists the various scheduling options.

Simulation Scheduling Options

To Specify
MATLAB Function
Execution...

Include... Where...

At explicit times time[, ...] time represents one of n time values, past
time 0, at which the MATLAB function
executes.

For example:

10 ns, 10 ms, 10 sec

The MATLAB function executes when
time equals 0 and then 10 nanoseconds,
10 milliseconds, and 10 seconds from
time zero.

Note For time-based parameters, you
can specify any standard time units (ns,
us, and so on). If you do not specify units,
the command treats the time value as a
value of HDL simulation ticks.

2-41

2 Linking MATLAB® to Incisive® Simulators

Simulation Scheduling Options (Continued)

To Specify
MATLAB Function
Execution...

Include... Where...

At a combination of
explicit times and
repeatedly at an
interval

time[, ...] -repeat n time represents one of n time values at
which the MATLAB function executes
and the n specified with -repeat
represents an interval between MATLAB
function executions. The interface
applies the union of the two options.

For example:

5 ns -repeat 10 ns

The MATLAB function executes at time
equals 0 ns, 5 ns, 15 ns, 25 ns, and so on.

2-42

Associating a MATLAB® Link Function with an HDL Module

Simulation Scheduling Options (Continued)

To Specify
MATLAB Function
Execution...

Include... Where...

When a specific signal
experiences a rising or
falling edge

-rising signal[, ...]

-falling signal[, ...]

signal represents a path name of a signal
defined as a logic type—STD_LOGIC, BIT,
X01, and so on.

On change of signal
values (sensitivity list)

-sensitivity signal[, ...] signal represents a path name of a
signal defined as any type. If the value
of one or more signals in the specified
list changes, the interface invokes the
MATLAB function.

Note Use of this option for INOUT ports
can result in double calls.

If you specify the option with no signals,
the interface is sensitive to value changes
for all signals.

For example:

-sensitivity /randnumgen/dout

The MATLAB function executes if the
value of dout changes.

Note When specifying signals with the -rising, -falling, and
-sensitivity options, specify them in full path name format. If you do
not specify a full path name, the command applies Cadence Incisive or NC
simulator rules to resolve signal specifications.

Consider the following matlabtb command:

2-43

2 Linking MATLAB® to Incisive® Simulators

ncsim> matlabtb test -rising /test/clk
-socket 4449

This command links an instance of the entity test to function test.m,
which executes within the context of MATLAB based on specified timing
parameters. In this case, the MATLAB function is called when the signal
/test/clk experiences a rising edge.

Arguments in the command line specify the following:

test That an instance of the entity ©test be
linked with the MATLAB function test.

-rising /test/clk That the MATLAB function test be called
when the signal /test/clk changes from
'0' to '1'.

-socket 4449 That TCP/IP socket port 4449 be used
to establish a communication link with
MATLAB.

To verify that the matlabtb or matlabtbeval command established a
connection, change your input focus to MATLAB and call the function
hdldaemon with the 'status' option as follows:

hdldaemon('status')

If a connection exists, the function returns the message

HDLDaemon socket server is running on port 4449 with 1 connection

Scheduling Link Functions Using the tnext Parameter of an
M-Function
You can control the callback timing of a MATLAB test bench function by
using that function’s tnext parameter. This parameter passes a time value to
the HDL simulator, which gets added to the MATLAB function’s simulation
schedule. If the function returns a null value ([]) , no new entries are added
to the schedule.

2-44

Associating a MATLAB® Link Function with an HDL Module

You can set the value of tnext to a value of type double or int64. The
following table explains how the interface converts each type of data for use
in the HDL simulator environment.

Time Representations for tnext Parameter

If You Specify a... The Interface...

double value Converts the value to seconds. For example, the
following value converts to the simulation time nearest
to 1 nanosecond as a multiple of the current HDL
simulator time resolution.

tnext = 1e-9

int64 value Converts to an integer multiple of the current HDL
simulator time resolution limit. For example, the
following value converts to 100 ticks of the current
time resolution.

tnext=int64(100)

Note The tnext parameter represents time from the start of the simulation.
Therefore, tnext should always be greater than tnow. If it is less, nothing
is scheduled.

Example. In the Oscillator demo, the oscfilter function calculates a time
interval at which callbacks should be executed. This interval is calculated on
the first call to oscfilter and is stored in the variable fastestrate. The
variable fastestrate is the sample period of the fastest oversampling rate
supported by the filter, derived from a base sampling period of 80 ns.

The following assignment statement sets the timing parameter tnext, which
schedules the next callback to the MATLAB component function, relative to
the current simulation time (tnow).

tnext = tnow + fastestrate;

2-45

2 Linking MATLAB® to Incisive® Simulators

A new value for tnext is returned each time the function is called.

2-46

Running MATLAB® Link Sessions

Running MATLAB® Link Sessions

In this section...

“Overview” on page 2-47

“Process for Running MATLAB Link Sessions” on page 2-47

“Placing a MATLAB Test Bench or Component Function on the MATLAB
Search Path” on page 2-48

“Starting the MATLAB Server” on page 2-48

“Checking the MATLAB Server’s Link Status” on page 2-50

“Starting Cadence Incisive or NC Simulator for Use with MATLAB” on
page 2-50

“Applying Stimuli with the HDL Simulator force Command” on page 2-51

“Running a Link Session” on page 2-52

“Restarting a Link Session” on page 2-54

“Stopping a Link Session” on page 2-54

Overview
The EDA Simulator Link™ IN software offers flexibility in how you start
and control an HDL model test bench or component session with MATLAB®

software. A MATLAB link session is the application of a matlabtb,
matlabtbeval, or matlabcp function.

Process for Running MATLAB Link Sessions
To start and control the execution of a simulation in the MATLAB
environment, perform the following steps:

1 Place MATLAB link function on the MATLAB search path.

2 Check the MATLAB server’s link status.

3 Start the MATLAB server.

4 Launch Cadence Incisive or NC simulator for use with MATLAB.

2-47

2 Linking MATLAB® to Incisive® Simulators

5 Load an HDL model in Cadence Incisive or NC simulator for simulation
and verification with MATLAB.

6 Decide on how you want to schedule invocations of the MATLAB test bench
function.

7 Register callbacks for the MATLAB link session.

8 Apply test bench stimuli.

9 Run and monitor the test bench session.

10 Restart simulator during a test bench session.

11 Stop a test bench session.

Placing a MATLAB Test Bench or Component Function
on the MATLAB Search Path
The MATLAB function associated with an HDL component must be on the
MATLAB search path or reside in the current working directory (see the
MATLAB cd function). To verify whether the function is accessible, use the
MATLAB which function. The following call to which checks whether the
function MyVhdlFunction is on the MATLAB search path:

which MyVhdlFunction
/work/incisive/MySym/MyVhdlFunction.m

If the specified function is on the search path, which displays the complete
path to the function’s M-file. If the function is not on the search path, which
informs you that the file was not found.

To add a MATLAB function to the MATLAB search path, open the Set
Path window by clicking File > Set Path, or use the addpath command.
Alternatively, for temporary access, you can change the MATLAB working
directory to a desired location with the cd command.

Starting the MATLAB Server
Start the MATLAB server as follows:

2-48

Running MATLAB® Link Sessions

1 Start MATLAB.

2 In the MATLAB Command Window, call the hdldaemon function with
property name/property value pairs that specify whether the EDA
Simulator Link IN software is to perform the following tasks:

• Use shared memory or TCP/IP socket communication

• Return time values in seconds or as 64-bit integers

Use the following syntax:

hdldaemon('PropertyName', PropertyValue...)

For example, the following command specifies using socket communication
on port 4449 and a 64-bit time resolution format for the MATLAB function’s
output ports.

hdldaemon('socket', 4449, 'time', 'int64')

See hdldaemon reference documentation for when and how to specify
property name/property value pairs and for more examples of using
hdldaemon.

Note The communication mode that you specify (shared memory or
TCP/IP sockets) must match what you specify for the communication
mode when you initialize the HDL simulator for use with a MATLAB link
session using the matlabtb or matlabtbeval HDL simulator command.
In addition, if you specify TCP/IP socket mode, the socket port that you
specify with this function and the HDL simulator command must match.
For more information on modes of communication, see “Choosing TCP/IP
Socket Ports” on page C-2. For more information on establishing the HDL
simulator end of the communication link, see “Associating the HDL Module
Component with the MATLAB Link Function” on page 2-37.

The MATLAB server can service multiple simultaneous HDL simulator
modules and clients. However, your M-code must track the I/O associated
with each entity or client.

2-49

2 Linking MATLAB® to Incisive® Simulators

Note You cannot begin an EDA Simulator Link IN transaction between
MATLAB and the HDL simulator from MATLAB. The MATLAB server simply
responds to function call requests that it receives from the HDL simulator.

Checking the MATLAB Server’s Link Status
The first step to starting an HDL simulator and MATLAB test bench session
is to check the MATLAB server’s link status. Is the server running? If the
server is running, what mode of communication and, if applicable, what
TCP/IP socket port is the server using for its links? You can retrieve this
information by using the MATLAB function hdldaemon with the 'status'
option. For example:

hdldaemon('status')

The function displays a message that indicates whether the server is running
and, if it is running, the number of connections it is handling. For example:

HDLDaemon socket server is running on port 4449 with 0 connections

If the server is not running, the message reads

HDLDaemon is NOT running

See ’Link Status’ in the hdldaemon reference documentation for information
on determining the mode of communication and the TCP/IP socket in use.

Starting Cadence Incisive or NC Simulator for Use
with MATLAB
Start Cadence Incisive or NC simulator directly from MATLAB by calling the
MATLAB function nclaunch. See “Starting the HDL Simulator” on page 1-24
for instructions on using nclaunch.

2-50

Running MATLAB® Link Sessions

Applying Stimuli with the HDL Simulator force
Command
After you establish a link between the HDL simulator and MATLAB, you are
ready to apply stimuli to the test bench environment. One way of applying
stimuli is through the iport parameter of the linked MATLAB function. This
parameter forces signal values by deposit.

Another option is to issue force commands in Cadence Incisive or NC
simulator main window.

For example, consider the following sequence of force commands:

force osc_top.clk_enable 1 -after 0ns
force osc_top.reset 0 -after 0ns 1 -after 40ns 0 -after 120ns
force osc_top.clk 1 -after 0ns 0 -after 40ns -repeat 80ns

force osc_top.clk_enable 1 -after 0ns
force osc_top.reset 0 -after 0ns 1 -after 40ns 0 -after 120ns
force osc_top.clk 1 -after 0ns 0 -after 40ns -repeat 80ns

These commands drive the following signals:

• The clk signal to 0 at 0 nanoseconds after the current simulation time
and to 1 at 5 nanoseconds after the current HDL simulation time. This
cycle repeats starting at 10 nanoseconds after the current simulation time,
causing transitions from 1 to 0 and 0 to 1 every 5 nanoseconds, as the
following diagram shows.

� 7
7

6

2 67 57 87

000

For example,

force /foobar/clk 0 0, 1 5 -repeat 10

• The clk_en signal to 1 at 0 nanoseconds after the current simulation time.

• The reset signal to 0 at 0 nanoseconds after the current simulation time.

2-51

2 Linking MATLAB® to Incisive® Simulators

Note You should consider using HDL to code clock signals as force is a lower
performance solution in the current version of Cadence Incisive simulators.

The following are ways that a periodic force might be introduced:

• Via the Clock pane in the HDL Cosimulation block

• Via pre/post Tcl commands in the HDL Cosimulation block

• Via a user-input Tcl script to ncsim

All three approaches may lead to performance degradation.

Running a Link Session
A typical sequence for running a simulation interactively from the main HDL
simulator window is shown below:

1 Start the simulation by entering the HDL simulator run command.

The run command offers a variety of options for applying control over how
a simulation runs. For example, you can specify that a simulation run
for several time steps.

The following command instructs the HDL simulator to run the loaded
simulation for 50000 time steps:

run 50000

2 Set breakpoints in the HDL and MATLAB code to verify and analyze
simulation progress and correctness.

How you set breakpoints in the HDL simulator will vary depending on
what simulator application you are using. The following list demonstrates
some ways you can set breakpoints in the MATLAB environment:

• Click next to an executable statement in the breakpoint alley of the
Editor/Debugger

• Click the Set/Clear Breakpoint button on the toolbar

• Select Set/Clear Breakpoint on the Breakpoints menu

2-52

Running MATLAB® Link Sessions

• Select Set/Clear Breakpoint on the context menu

• Call the dbstop function

3 Step through the simulation and examine values.

How you step through the simulation in the HDL simulator will vary
depending on what simulator application you are using. The following
list demonstrates some ways you can step through code in the MATLAB
environment.

• Click the Step, Step In, or Step Out toolbar button

• Select the Step, Step In, or Step Out option on the Debug menu

• Select the Go Until Cursor menu option

• Call the dbstep function

4 When you block execution of the MATLAB function, the HDL simulator
also blocks and remains blocked until you clear all breakpoints in the
function’s M-code.

5 Resume the simulation, as needed.

How you resume the simulation in the HDL simulator will vary
depending on what simulator application you are using. The following
list demonstrates ways you can resume a simulation in the MATLAB
environment.

• Click the Continue toolbar button

• Select the Continue, Run, or Save and Run option on the Debug
menu

• Call the dbcont function

The following HDL simulator command resumes a simulation:

run -continue

For more information on HDL simulator and MATLAB debugging features,
see the appropriate HDL simulator documentation and MATLAB online help
or documentation.

2-53

2 Linking MATLAB® to Incisive® Simulators

Restarting a Link Session
Because the HDL simulator issues the service requests during a MATLAB
test bench session, you must restart a test bench session from the HDL
simulator. To restart a session, perform the following steps:

1 Make the HDL simulator your active window, if your input focus was not
already set to that application.

2 Reload HDL design elements and reset the simulation time to zero.

3 Reissue the matlabtb command.

Note To restart a simulation that is in progress, issue a break command and
end the current simulation session before restarting a new session.

Stopping a Link Session
When you are ready to stop a test bench session, it is best to do so in an orderly
way to avoid possible corruption of files and to ensure that all application
tasks shut down appropriately. You should stop a session as follows:

1 Make the HDL simulator your active window, if your input focus was not
already set to that application.

2 Halt the simulation. You must quit the simulation at the HDL simulator
side or MATLAB may hang until the simulator is quit.

3 Close your project.

4 Exit the HDL simulator, if you are finished with the application.

5 Quit MATLAB, if you are finished with the application. If you want to
shut down the server manually, stop the server by calling hdldaemon with
the 'kill' option:

hdldaemon('kill')

For more information on closing HDL simulator sessions, see the HDL
simulator documentation.

2-54

3

Linking Simulink® to
Incisive® Simulators

Simulink®-Incisive® Workflow
(p. 3-2)

Provides a high-level view of the
steps involved in coding and running
a Simulink cosimulation for use
with the EDA Simulator Link™ IN
software.

Introduction to Cosimulation (p. 3-5) Provides an introduction to the
process for integrating EDA
Simulator Link IN blocks into a
Simulink® design.

Preparing for Cosimulation (p. 3-14) Describes the different procedures
required for HDL model cosimulation

Incorporating Hardware Designs
into a Simulink® Model (p. 3-28)

Explains how to add the HDL
Cosimulation block to Simulink and
configure the block for your HDL
module

Running Cosimulation Sessions
(p. 3-56)

Describes how to run, test, and
optimize your cosimulation

3 Linking Simulink® to Incisive® Simulators

Simulink®-Incisive® Workflow
The following table lists the steps necessary to cosimulate an HDL design
using Simulink® software.

In MATLAB... In Cadence Incisive or NC
Simulator...

In Simulink...

1 Start the MATLAB®

application and invoke
the Incisive® simulator
(see “Starting the HDL
Simulator” on page 1-24)

2 Create the HDL model.

3 Compile and elaborate the
HDL model using nclaunch.

Load elaborated HDL
model with EDA Simulator
Link™ IN libraries. See
“Loading an HDL Design for
Verification” on page 2-12.

3-2

Simulink®-Incisive® Workflow

In MATLAB... In Cadence Incisive or NC
Simulator...

In Simulink...

4 Create a new Simulink
model.

5 Add an HDL Cosimulation
block (see “Incorporating
Hardware Designs into a
Simulink® Model” on page
3-28).

6 Define the block interface
(see “Defining the Block
Interface” on page 3-33).

7 Add other Simulink blocks
to complete the Simulink
model.

3-3

3 Linking Simulink® to Incisive® Simulators

In MATLAB... In Cadence Incisive or NC
Simulator...

In Simulink...

8 (Optional) Set breakpoints
for interactive HDL debug.

9 Run the simulation.

10 Verify that the revised
model runs as expected. If
it does not, then:

a Modify the VHDL or
Verilog code and simulate
it in the HDL simulator.

b Determine whether you
need to reconfigure the
HDL Cosimulation block.
If you do, repeat steps 7
and 10.

11 Consider using a To
VCD File block to verify
cosimulation results.

3-4

Introduction to Cosimulation

Introduction to Cosimulation

In this section...

“Creating a Hardware Model Design for Use in Simulink® Applications”
on page 3-5

“The EDA Simulator Link™ IN HDL Cosimulation Block” on page 3-7

“Communicating Between the HDL Simulator and Simulink® Software”
on page 3-12

Creating a Hardware Model Design for Use in
Simulink® Applications
After you decide to include Simulink® software as part of your EDA flow,
think about its role:

• Will you start by developing an HDL application using Incisive® simulators,
and possibly MATLAB® software, and then test the results at a system
level in Simulink?

• Will you start with a system-level model in Simulink with “black box
hardware components” and, after the model runs as expected, replace the
black boxes with HDL Cosimulation blocks?

• What other Simulink blocksets might apply to your application? Blocksets
of particular interest for EDA applications include the Communications
Blockset, Signal Processing Blockset, and Simulink Fixed Point software.

• Will you set up HDL Cosimulation blocks as a subsystem in your model?

• What sample times will be used in the model? Will any sample times need
to be scaled?

• Will you generate a Value Change Dump (VCD) file?

After you answer these questions, use Simulink to build your simulation
environment.

As the following figure shows, multiple cosimulation blocks in a Simulink
model can request the service of multiple instances of the HDL simulator,
using unique TCP/IP socket ports.

3-5

3 Linking Simulink® to Incisive® Simulators

���	���������
������

����

���	���������
������

����

��������
'�����

#���
.../

#���
...9

When linked with Simulink, the HDL simulator functions as the server.
Using the EDA Simulator Link™ IN communications interface, an HDL
Cosimulation block cosimulates a hardware component by applying input
signals to and reading output signals from an HDL model under simulation
in the HDL simulator.

This figure shows a sample Simulink model that includes an HDL
Cosimulation block.

The HDL Cosimulation block models a Manchester receiver that is coded in
HDL. Other blocks and subsystems in the model include the following:

• Frequency Error Range block, Frequency Error Slider block, and Phase
Event block

3-6

Introduction to Cosimulation

• Manchester encoder subsystem

• Data alignment subsystem

• Inphase/Quadrature (I/Q) capture subsystem

• Error Rate Calculation block from the Communications Blockset software

• Bit Errors block

• Data Scope block

• Discrete-Time Scatter Plot Scope block from the Communications Blockset
software

For information on getting started with Simulink, see the Simulink online
help or documentation.

The EDA Simulator Link™ IN HDL Cosimulation Block
The EDA Simulator Link IN HDL Cosimulation Block links hardware
components that are concurrently simulating in the HDL simulator to the rest
of a Simulink model.

Two potential use cases follow:

• A single HDL Cosimulation block fits into the framework of a larger
system-oriented Simulink model.

• The Simulink model is a collection of HDL Cosimulation blocks, each
representing a specific hardware component.

The block mask contains panels for entering port and signal information,
setting communication modes, adding clocks, specifying pre- and
post-simulation Tcl commands, and defining the timing relationship.

After you code one of your model’s components in VHDL or Verilog and
simulate it in the HDL simulator environment, you integrate the HDL
representation into your Simulink model as an HDL Cosimulation block. This
block, located in the Simulink Library, within the EDA Simulator Link IN
block library, is shown below.

3-7

3 Linking Simulink® to Incisive® Simulators

You configure an HDL Cosimulation block by specifying values for parameters
in a block parameters dialog. The HDL Cosimulation block parameters dialog
consists of tabbed panes that specify the following:

• Ports Pane: Block input and output ports that correspond to signals,
including internal signals, of your HDL design, and an output sample time.
See “Ports Pane” on page 6-4 in the Chapter 6, “EDA Simulator Link™ IN
Simulink® Block Reference”.

• Connection Pane: Type of communication and communication settings to
be used for exchanging data between simulators. See “Connection Pane” on
page 6-10 in the Chapter 6, “EDA Simulator Link™ IN Simulink® Block
Reference”.

3-8

Introduction to Cosimulation

• Timescales Pane: Timing relationship between Simulink and the HDL
simulator. See “Timescales Pane” on page 6-14 in the Chapter 6, “EDA
Simulator Link™ IN Simulink® Block Reference”.

3-9

3 Linking Simulink® to Incisive® Simulators

• Clocks Pane: Optional rising-edge and falling-edge clocks to apply to your
model. See “Clocks Pane” on page 6-16 in the Chapter 6, “EDA Simulator
Link™ IN Simulink® Block Reference”.

3-10

Introduction to Cosimulation

• Tcl Pane: Tcl commands to run before and after a simulation. See “Tcl
Pane” on page 6-19 in the Chapter 6, “EDA Simulator Link™ IN Simulink®

Block Reference”.

3-11

3 Linking Simulink® to Incisive® Simulators

Note Make sure that signals being used in cosimulation have read/write
access (this is done through the HDL simulator—see product documentation
for details). This rule applies to all signals on the Ports, Clocks, and Tcl
panes.

Communicating Between the HDL Simulator and
Simulink® Software
When linked with a Simulink application, the HDL simulator functions as the
server, as shown in the following figure.

��������
'�����

���	���������
������

(��

(����

��

����
)�*����

)�������

3-12

Introduction to Cosimulation

In this case, the HDL simulator responds to simulation requests it receives
from cosimulation blocks in a Simulink model. You begin a cosimulation
session from Simulink. After a session is started, you can use Simulink
and the HDL simulator to monitor simulation progress and results. For
example, you might add signals to a wave window to monitor simulation
timing diagrams.

As the following figure shows, multiple cosimulation blocks in a Simulink
model can request the service of multiple instances of the HDL simulator,
using unique TCP/IP socket ports.

���	���������
������

����

���	���������
������

����

��������
'�����

#���
.../

#���
...9

3-13

3 Linking Simulink® to Incisive® Simulators

Preparing for Cosimulation

In this section...

“Overview” on page 3-14

“How Simulink Drives Cosimulation Signals” on page 3-15

“Representation of Simulation Time” on page 3-15

“Handling Multirate Signals” on page 3-22

“Handling Frame-Based Signals” on page 3-22

“Avoiding Race Conditions in HDL Simulation” on page 3-24

“Block Simulation Latency” on page 3-24

“Interfacing with Continuous Time Signals” on page 3-25

“Setting Simulink Software Configuration Parameters” on page 3-25

“Simulink and HDL Simulator Communication Options” on page 3-27

“Starting the HDL Simulator” on page 3-27

Overview
The EDA Simulator Link™ IN HDL Cosimulation block serves as a bridge
between the Simulink® and the HDL simulator domains. The block represents
an HDL component model within the Simulink software. Using the block,
Simulink software writes (drives) signals to and reads signals from the HDL
model under simulation in the Incisive® simulator. Signal exchange between
the two domains occurs at regularly scheduled time steps defined by the
Simulink sample time.

As you develop an EDA Simulator Link IN cosimulation application, you
should be familiar with how signal values are handled across the simulation
domains with respect to the following cases:

• How Simulink drives cosimulation signals

• Representation of simulation time

• Handling multirate signals

• Handling Frame-based signals

3-14

Preparing for Cosimulation

• Avoiding race conditions ()

• Block simulation latency

• Interfacing with continuous time signals

• Setting Simulink configuration parameters

• Setting the communication link

• Starting the HDL simulator

How Simulink Drives Cosimulation Signals
Although you can bind the output ports of an HDL Cosimulation block to
any signal in an HDL model hierarchy, you must use some caution when
connecting signals to input ports. Ensure that the signal you are binding to
does not have other drivers. If it does, use resolved logic types; otherwise
you may get unpredictable results.

If you need to use a signal that has multiple drivers and it is resolved (for
example, it is of VHDL type STD_LOGIC) , Simulink applies the resolution
function at each time step defined by the signal’s Simulink sample rate.
Depending on the other drivers, the Simulink value may or may not get
applied. Furthermore, Simulink has no control over signal changes that occur
between its sample times.

Note Make sure that signals being used in cosimulation have read/write
access (this is done through the HDL simulator—see product documentation
for details). This rule applies to all signals on the Ports, Clocks, and Tcl
panes.

Representation of Simulation Time
The representation of simulation time differs significantly between the HDL
simulator and Simulink.

In Cadence Incisive or NC Simulator, the unit of simulation time is referred to
as a tick. The duration of a tick is defined by the HDL simulator resolution
limit. The default resolution limit is 1 ns.

3-15

3 Linking Simulink® to Incisive® Simulators

To determine the current HDL simulator resolution limit, enter echo
$timescale at the HDL simulator prompt. See the HDL simulator
documentation for the application you are using for further information.

Simulink maintains simulation time as a double-precision value scaled to
seconds. This representation accommodates modeling of both continuous
and discrete systems.

The relationship between Simulink and the HDL simulator timing affects
the following aspects of simulation:

• Total simulation time

• Input port sample times

• Output port sample times

• Clock periods

During a simulation run, Simulink communicates the current simulation
time to the HDL simulator at each intermediate step. (An intermediate step
corresponds to a Simulink sample time hit. Upon each intermediate step, new
values are applied at input ports, or output ports are modified.) To bring
the HDL simulator up-to-date with Simulink during cosimulation, sampled
Simulink time must be converted to HDL simulator time (ticks) and the HDL
simulator must run for the computed number of ticks.

Caution If you specify a Simulink sample time that cannot be expressed as
a whole number of HDL ticks, you will get an error.

The EDA Simulator Link IN cosimulation interface provides controls that
let you configure the timing relationship between the HDL simulator
and Simulink and avoid timing errors caused by differences in timing
representation.

Defining the Simulink and HDL Simulator Timing Relationship
The Timescales pane of the HDL Cosimulation block parameters dialog lets
you choose an optimal timing relationship between Simulink and the HDL

3-16

Preparing for Cosimulation

simulator. The figure below shows the default settings of the Timescales
pane.

The Timescales pane defines a correspondence between one second of
Simulink time and some quantity of HDL simulator time. This quantity of
HDL simulator time can be expressed in one of the following ways:

• In relative terms (i.e., as some number of HDL simulator ticks). In this
case, the cosimulation is said to operate in relative timing mode. Relative
timing mode is the default.

• In absolute units (such as milliseconds or nanoseconds). In this case, the
cosimulation is said to operate in absolute timing mode.

The following sections discuss these two timing modes.

Relative Timing Mode
Relative timing mode defines the following one-to-one correspondence between
simulation time in Simulink and the HDL simulator:

3-17

3 Linking Simulink® to Incisive® Simulators

• One second in Simulink corresponds to N ticks in the HDL simulator,
where N is a scale factor.

This correspondence holds regardless of the HDL simulator timing resolution.

The following pseudocode shows how Simulink time units are quantized to
HDL simulator ticks:

InTicks = N * tInSecs

where InTicks is the HDL simulator time in ticks, tInSecs is the Simulink
time in seconds, and N is a scale factor.

Operation of Relative Timing Mode. By default, the HDL Cosimulation
block is configured for relative mode, with a scale factor of 1. Thus, 1 Simulink
second corresponds to 1 tick in the HDL simulator. In the default case:

• If the total simulation time in Simulink is specified as N seconds, then the
Cadence Incisive or NC Simulator HDL simulation will run for exactly N
ticks (i.e., N ns at the default resolution limit).

• Similarly, if Simulink computes the sample time of an HDL Cosimulation
block input port as Tsi seconds, new values will be deposited on the HDL
input port at exact multiples of Tsi ticks. If an output port has an explicitly
specified sample time of Tso seconds, values will be read from the HDL
simulator at multiples of Tso ticks.

Relative Timing Mode Example

3-18

Preparing for Cosimulation

The model contains an HDL Cosimulation block (labeled HDL_Cosimulation1)
simulating an 8-bit inverter that is enabled by an explicit clock. The inverter
has a single input and a single output. The following lists the Verilog code
for the inverter:

module inverter_clock_vl(sin, sout,clk);

input [7:0] sin;
output [7:0] sout;
input clk;
reg [7:0] sout;

always @(posedge clk)
sout <= ! (sin);

endmodule

A cosimulation of this model might have the following settings:

• Simulation parameters in Simulink:

- Timescales parameters: 1 Simulink second = 10 HDL simulator ticks

- Total simulation time: 30 s

- Input port (inverter_clock_vl.sin) sample time: N/A

- Output port (inverter_clock_vl.sout) sample time: 1 s

- Clock (inverter_clock_vl.clk) period: 5 s

• HDL simulator resolution limit: 1 ns

The previous example was excerpted from the EDA Simulator Link IN
Inverter tutorial. For more information, see EDA Simulator Link IN demos.

Absolute Timing Mode
Absolute timing mode lets you define the timing relationship between
Simulink and the HDL simulator in terms of absolute time units and a scale
factor:

3-19

3 Linking Simulink® to Incisive® Simulators

• One second in Simulink corresponds to (N * Tu) seconds in the HDL
simulator, where Tu is an absolute time unit (e.g., ms, ns, etc.) and N is a
scale factor.

To configure the Timescales parameters for absolute timing mode, you select
a unit of absolute time, rather than Tick.

In absolute timing mode, all sample times and clock periods in Simulink are
quantized to HDL simulator ticks. The following pseudocode illustrates the
conversion:

tInTicks = tInSecs * (tScale / tRL)

where:

• tInTicks is the HDL simulator time in ticks.

• tInSecs is the Simulink time in seconds.

• tScale is the timescale setting (unit and scale factor) chosen in the
Timescales pane of the HDL Cosimulation block.

• tRL is the HDL simulator resolution limit.

For example, given a Timescales pane setting of 1 s and an HDL simulator
resolution limit of 1 ns, an output port sample time of 12 ns would be
converted to ticks as follows:

tInTicks = 12ns * (1s / 1ns) = 12

Operation of Absolute Timing Mode. To understand the operation of
absolute timing mode, we will again consider the example model discussed in
“Operation of Relative Timing Mode” on page 3-18. Suppose that the model is
reconfigured as follows:

• Simulation parameters in Simulink:

- Timescale parameters: 1 s of Simulink time corresponds to 1 s of HDL
simulator time.

- Total simulation time: 60e-9 s (60ns)

3-20

Preparing for Cosimulation

- Input port (/inverter/inport) sample time: 24e-9 s (24 ns)

- Output port (/inverter/outport) sample time: 12e-9 s (12 ns)

- Clock (inverter/clk) period: 10e-9 s (10 ns)

• HDL simulator resolution limit: 1 ns

Given these simulation parameters, Simulink will cosimulate with the HDL
simulator for 60 ns. Inputs are sampled at a intervals of 24 ns and outputs
are updated at intervals of 12 ns. Clocks are driven at intervals of 10 ns.

Timing Mode Usage Restrictions
The following restrictions apply to the use of absolute and relative timing
modes:

• When multiple HDL Cosimulation blocks in a model are communicating
with a single instance of the HDL simulator, all HDL Cosimulation blocks
must have the same Timescales pane settings.

• If you change the Timescales pane settings in an HDL Cosimulation block
between consecutive cosimulation runs, you must restart the simulation in
the HDL simulator.

Setting HDL Cosimulation Port Sample Times
In general, Simulink handles the sample time for the ports of an HDL
Cosimulation block as follows:

• If an input port is connected to a signal that has an explicit sample time,
based on forward propagation, Simulink applies that rate to that input port.

• If an input port is connected to a signal that does not have an explicit sample
time, Simulink assigns a sample time that is equal to the least common
multiple (LCM) of all identified input port sample times for the model.

• After Simulink sets the input port sample periods, it applies user-specified
output sample times to all output ports. Sample times must be explicitly
defined for all output ports.

If you are developing a model for cosimulation in relative timing mode,
consider the following sample time guideline:

3-21

3 Linking Simulink® to Incisive® Simulators

• Specify the output sample time for an HDL Cosimulation block as an
integer multiple of the resolution limit defined in the HDL simulator.
Use the HDL simulator command report simulator state to check the
resolution limit of the loaded model. If the HDL simulator resolution
limit is 1 ns and you specify a block’s output sample time as 20, Simulink
interacts with the HDL simulator every 20 ns.

Handling Multirate Signals
EDA Simulator Link IN software supports the use of multirate signals,
signals that are sampled or updated at different rates, in a single HDL
Cosimulation block. An HDL Cosimulation block exchanges data for each
signal at the Simulink sample rate for that signal. For input signals, an HDL
Cosimulation block accepts and honors all signal rates.

The HDL Cosimulation block also lets you specify an independent sample
time for each output port. You must explicitly set the sample time for each
output port, or accept the default. This lets you control the rate at which
Simulink updates an output port by reading the corresponding signal from
the HDL simulator.

Handling Frame-Based Signals
This section discusses how to improve the performance of your cosimulation
by using frame-based signals. An example is provided.

• “Overview” on page 3-22

• “Using Frame-Based Processing” on page 3-23

Overview
The HDL Cosimulation block supports processing of single-channel
frame-based signals.

A frame of data is a collection of sequential samples from a single channel or
multiple channels. One frame of a single-channel signal is represented by a
M-by-1 column vector. A signal is frame- based if it is propagated through a
model one frame at a time.

3-22

Preparing for Cosimulation

Frame-based processing requires the Signal Processing Blockset software.
Source blocks from the Signal Processing Sources library let you specify a
frame-based signal by setting the Samples per frame block parameter. Most
other signal processing blocks preserve the frame status of an input signal.
You can use the Buffer block to buffer a sequence of samples into frames.

Frame-based processing can improve the computational time of your
Simulink models, because multiple samples can be processed at once. Use
of frame-based signals also lets you simulate the behavior of frame-based
systems more accurately.

See “Working with Signals” in the Signal Processing Blockset documentation
for detailed information about frame-based processing.

Using Frame-Based Processing
You do not need to configure the HDL Cosimulation block in any special way
for frame-based processing. To use frame-based processing in a cosimulation,
connect one or more single-channel frame-based signals to the input port(s) of
the HDL Cosimulation block. All such signals must meet the requirements
described in “Frame-Based Processing Requirements and Restrictions” on
page 3-23. The HDL Cosimulation block automatically configures its output(s)
for frame-based operation at the appropriate frame size.

Note that use of frame-based signals affects only the Simulink side of the
cosimulation. The behavior of the HDL code under simulation in the HDL
simulator does not change in any way. Simulink assumes that HDL simulator
processing is sample-based. Samples acquired from the HDL simulator are
assembled into frames as required by Simulink. Conversely, output data
framed by Simulink is transmitted to the HDL simulator in frames, which are
unpacked and processed by the HDL simulator one sample at a time.

Frame-Based Processing Requirements and Restrictions. Observe the
following restrictions and requirements when connecting frame-based signals
in to an HDL Cosimulation block:

• Connection of mixed frame-based and sample-based signals to the same
HDL Cosimulation block is not supported.

3-23

3 Linking Simulink® to Incisive® Simulators

• Only single-channel frame-based signals can be connected to the HDL
Cosimulation block. Use of multichannel (matrix) frame-based signals is
not supported in this release.

• All frame-based signals connected to the HDL Cosimulation block must
have the same frame size.

Frame-based processing in the Simulink model is transparent to the operation
of the HDL model under simulation in the HDL simulator. The HDL model
is presumed to be sample-based. The following constraint also applies to the
HDL model under simulation in the HDL simulator:

• VHDL signals should be specified as scalars, not vectors or arrays (with
the exception of bit vectors, as VHDL and Verilog bit vectors are converted
to the appropriately sized fixed-point scalar data type by the HDL
Cosimulation block).

Avoiding Race Conditions in HDL Simulation
In Cadence Incisive or NC Simulator, it is not possible to guarantee the
order in which clock signals (rising-edge or falling-edge) defined in the
HDL Cosimulation block are applied, relative to the data inputs driven
by these clocks. Therefore, if care is not taken to ensure the relationship
between the data and active edges of the clock, race conditions could create
non-deterministic cosimulation results.

For more on race conditions in hardware simulators, see Appendix D, “Race
Conditions in HDL Simulators”.

Block Simulation Latency
Simulink and the EDA Simulator Link IN Cosimulation blocks supplement
the hardware simulator environment, rather than operate as part of it.
During cosimulation, Simulink does not participate in the HDL simulator
delta-time iteration. From the Simulink perspective, all signal drives (reads)
occur during a single delta-time cycle. For this reason, and due to fundamental
differences between the HDL simulator and Simulink with regard to use and
treatment of simulation time, some degree of latency is introduced when you
use EDA Simulator Link IN Cosimulation blocks. The latency is a time lag
that occurs between when Simulink begins the deposit of a signal and when
the effect of the deposit is visible on cosimulation block output.

3-24

Preparing for Cosimulation

As the following figure shows, Simulink cosimulation block input affects signal
values just after the current HDL simulator time step (t+δ) and block output
reflects signal values just before the current HDL simulator step time (t-δ) .

Regardless of whether your HDL code is specified with latency, the
cosimulation block has a minimum latency that is equivalent to the
cosimulation block’s output sample time. For large sample times, the delay
can appear to be quite long, but this is an artifact of the cosimulation block,
which exchanges data with the HDL simulator at the block’s output sample
time only. This may be reasonable for a cosimulation block that models a
device that operates on a clock edge only, such as a register-based device.

For cosimulation blocks that model combinatorial circuits, you may want to
experiment with a faster sample frequency for output ports. For cosimulation
blocks that model combinatorial circuits, you may want to experiment with a
faster sampling frequency for output ports in order to reduce this latency.runn

Interfacing with Continuous Time Signals
Use the Simulink Zero-Order Hold block to apply a zero-order hold (ZOH) on
continuous signals that are driven into an HDL Cosimulation block.

Setting Simulink Software Configuration Parameters
When you create a Simulink model that includes one or more EDA Simulator
Link IN Cosimulation blocks, you might want to adjust certain Simulink
parameter settings to best meet the needs of HDL modeling. For example,

3-25

3 Linking Simulink® to Incisive® Simulators

you might want to adjust the value of the Stop time parameter in the Solver
pane of the Configuration Parameters dialog box.

You can adjust the parameters individually or you can use the M-file
dspstartup, which lets you automate the configuration process so that every
new model that you create is preconfigured with the following relevant
parameter settings:

Parameter Default Setting

'SingleTaskRateTransMsg' 'error'

'Solver' 'fixedstepdiscrete'

'SolverMode' 'singletasking'

'StartTime' '0.0'

'StopTime' 'inf'

'FixedStep' 'auto'

'SaveTime' 'off'

'SaveOutput' 'off'

'AlgebraicLoopMsg' 'error'

The default settings for 'SaveTime' and 'SaveOutput' improve simulation
performance.

You can use dspstartup by entering it at the MATLAB command line or
by adding it to the Simulink startup.m file. You also have the option of
customizing dspstartup settings. For example, you might want to adjust the
'StopTime' to a value that is optimal for your simulations, or set 'SaveTime'
to 'on' to record simulation sample times.

3-26

Preparing for Cosimulation

For more information on using and customizing dspstartup, see the Signal
Processing Blockset documentation. For more information about automating
tasks at startup, see the description of the startup command in the MATLAB
documentation.

Running and Testing a Hardware Model in Simulink
If you take the approach of designing a Simulink model first, run and test your
model thoroughly before replacing or adding hardware model components as
EDA Simulator Link IN Cosimulation blocks.

Simulink and HDL Simulator Communication Options
Select shared memory or socket communication. See “Communicating with
MATLAB or Simulink and the HDL Simulator” on page 1-8.

Starting the HDL Simulator
See “Starting the HDL Simulator” on page 1-24.

3-27

3 Linking Simulink® to Incisive® Simulators

Incorporating Hardware Designs into a Simulink® Model

In this section...

“Overview” on page 3-28

“Specifying HDL Signal/Port and Module Paths for Cosimulation” on page
3-29

“Driving Clocks, Resets, and Enables” on page 3-31

“Defining the Block Interface” on page 3-33

“Specifying the Signal Datatypes” on page 3-43

“Configuring the Simulink and Cadence Incisive or NC Simulator Timing
Relationship” on page 3-45

“Configuring the Communication Link in the HDL Cosimulation Block”
on page 3-46

“Specifying Pre- and Post-Simulation Tcl Commands with HDL
Cosimulation Block Parameters Dialog Box” on page 3-49

“Programmatically Controlling the Block Parameters” on page 3-50

“Adding a Value Change Dump (VCD) File” on page 3-52

Overview
After you code one of your model’s components in VHDL or Verilog
and simulate it in the HDL simulator environment, integrate the HDL
representation into your Simulink® model as an HDL Cosimulation block
by performing the following steps:

1 Open your Simulink model, if it is not already open.

2 Delete the model component that the HDL Cosimulation block is to replace.

3 In the Simulink Library Browser, click the EDA Simulator Link™ IN block
library. The browser displays the block icons shown below.

3-28

Incorporating Hardware Designs into a Simulink® Model

HDL
Cosimulation

Block that has at least one input
port and one output port.

To VCD File Generates a Value Change Dump
(VCD) file. For information on
using this block, see “Adding a
Value Change Dump (VCD) File”
on page 3-52.

4 Copy the HDL Cosimulation block icon from the Library Browser to your
model. Simulink creates a link to the block at the point where you drop
the block icon.

5 Connect any HDL Cosimulation block ports to appropriate blocks in your
Simulink model. To model a sink device, configure the block with inputs
only. To model a source device, configure the block with outputs only.

Specifying HDL Signal/Port and Module Paths for
Cosimulation
These rules are for signal/port and module path specifications in Simulink.
Other specifications may work but are not guaranteed to work in this or
future releases.

HDL designs generally do have hierarchy; that is the reason for this syntax.
This is not a file name hierarchy.

Path Specifications for Simulink Cosimulation Sessions with
Verilog Top Level
Path specifications must adhere to the following rules:

• Path specification must start with a top-level module name.

• Path specification can include "." or "/" path delimiters, but cannot include
a mixture.

3-29

3 Linking Simulink® to Incisive® Simulators

• The leaf module or signal must match the HDL language of the top-level
module.

The following are valid signal and module path specification examples:

top.port_or_sig
/top/sub/port_or_sig
top
top/sub
top.sub1.sub2

The following are invalid signal and module path specification examples:

top.sub/port_or_sig
:sub:port_or_sig
:
:sub

Path Specifications for Simulink Cosimulation Sessions with
VHDL Top Level
Path specifications must adhere to the following rules:

• Path specification may include the top-level module name but it is not
required.

• Path specification can include "." or "/" path delimiters, but cannot include
a mixture.

• The leaf module or signal must match the HDL language of the top-level
module.

The following are valid signal and module path specification examples:

top.port_or_sig
/sub/port_or_sig
top
top/sub
top.sub1.sub2

The following are invalid signal and module path specification examples:

3-30

Incorporating Hardware Designs into a Simulink® Model

top.sub/port_or_sig
:sub:port_or_sig
:
:sub

Driving Clocks, Resets, and Enables

Creating Optional Clocks
You can create rising-edge or falling-edge clocks that apply internal stimuli to
your cosimulation model. When you specify a clock in your block definition,
Simulink creates a rising-edge or falling-edge clock that drives the specified
HDL signals by depositing them.

Simulink attempts to create a clock that has a 50% duty cycle and a predefined
phase that is inverted for the falling edge case. If necessary, Simulink
degrades the duty cycle to accommodate odd Simulink sample times, with a
worst case duty cycle of 66% for a sample time of T=3.

The following figure shows a timing diagram that includes rising and falling
edge clocks with a Simulink sample time of T=10 and an HDL simulator
resolution limit of 1 ns. The figure also shows that given those timing
parameters, the clock duty cycle is 50%.

6	��

27:	����	'����

)����
	�

�	'����

��������	������	#����
;	!<67

���	���������)���������	�����

�

&�����
	�

�	'����

To create clocks, perform the following steps:

3-31

3 Linking Simulink® to Incisive® Simulators

1 In the HDL simulator, determine the clock signal path names you plan to
define in your block. To do this, you can use the same method explained for
determining the signal path names for ports in step 1 of “Mapping HDL
Signals to Block Ports” on page 3-34.

2 Select the Clocks tab of the Block Parameters dialog. Simulink displays
the dialog as shown below.

3 Click the New button to add a new clock signal.

4 Edit the clock signal path name directly in the table under the Full
HDL Name column by double-clicking on the default clock signal
name (/top/clk). Specify your new clock using HDL simulator path
name syntax. See “Specifying HDL Signal/Port and Module Paths for
Cosimulation” on page 3-29.

Note that vectored signals in the Clocks pane are not supported. Signals
must be logic types with ’1’ and ’0’ values.

5 To specify whether the clock generates a rising-edge or falling edge signal,
select Rising or Falling from the Active Clock Edge list.

3-32

Incorporating Hardware Designs into a Simulink® Model

6 The Period field specifies the clock period. Accept the default (2), or
override it by entering the desired clock period explicitly by double-clicking
in the Period field.

Specify the Period field as an even integer, with a minimum value of 2.

7 When you have finished editing clock signals, click Apply to register your
changes with Simulink.

The following dialog defines the rising-edge clock clk for the HDL
Cosimulation block, with a default period of 2.

Defining the Block Interface
To open the block parameters dialog for the HDL Cosimulation block,
double-click the block icon.

3-33

3 Linking Simulink® to Incisive® Simulators

Simulink displays the following Block Parameters dialog.

Mapping HDL Signals to Block Ports
The first step to configuring your EDA Simulator Link IN Cosimulation block
is to map signals and signal instances of your HDL design to port definitions
in your HDL Cosimulation block. In addition to identifying input and output
ports, you can specify a sample time for each output port. You can also specify
a fixed-point data type for each output port.

The signals that you map can be at any level of the HDL design hierarchy.

To map the signals, you can perform either of the following actions:

3-34

Incorporating Hardware Designs into a Simulink® Model

• Enter signal information manually into the Ports pane of the HDL
Cosimulation Block Parameters dialog (see “Entering Signal Information
Manually” on page 3-40). This approach can be more efficient when
you want to connect a small number of signals from your HDL model
to Simulink.

• Use the Auto Fill button to obtain signal information automatically
by transmitting a query to the HDL simulator. This approach can save
significant effort when you want to cosimulate an HDL model that has
many signals that you want to connect to your Simulink model. Note,
however, that in some cases you will need to edit the signal data returned
by the query. See “Obtaining Signal Information Automatically from the
HDL Simulator” on page 3-35 for details.

Note Make sure that signals being used in cosimulation have read/write
access (this is done through the HDL simulator—see product documentation
for details). This rule applies to all signals on the Ports, Clocks, and Tcl
panes.

Obtaining Signal Information Automatically from the HDL Simulator.
The Auto Fill button lets you begin an HDL simulator query and supply a
path to a component or module in an HDL model under simulation in the
HDL simulator. Usually, some change of the port information is required after
the query completes. The required steps are outlined in the example below.

The example is based on a modified copy of the Manchester Receiver model
(see “Creating a Hardware Model Design for Use in Simulink® Applications”
on page 3-5), in which all signals were first deleted from the Ports and
Clocks panes.

1 Open the block parameters dialog for the HDL Cosimulation block. Click
the Ports tab. The Ports pane opens.

3-35

3 Linking Simulink® to Incisive® Simulators

Tip Delete all ports before performing Auto Fill. This ensures that no
unused signal is present in the Ports list at any time.

2 Click the Auto Fill button. The Auto Fill dialog opens.

This modal dialog requests an instance path to a component or module in
your HDL model; here you enter an explicit HDL path into the edit field.
Note this is not a file path and has nothing to do with the source files.

3-36

Incorporating Hardware Designs into a Simulink® Model

3 In this example, we will obtain port data for a VHDL component called
manchester. The HDL path is specified as /top/manchester.

4 Click OK. The dialog is dismissed and the query is transmitted.

5 Port data is returned and entered into the Ports pane, as shown in the
figure below.

6 Click Apply to commit the port additions.

3-37

3 Linking Simulink® to Incisive® Simulators

7 Observe that Auto Fill has returned information about all inputs and
outputs for the targeted component. In many cases, this will include
signals that function in the HDL simulator but cannot be connected in the
Simulink model. You may delete any such entries from the list in the Ports
pane if they are unwanted. You can drive the signals from Simulink; you
just have to define their values by laying down Simulink blocks.

The figure above shows that the query entered clock, clock enable, and
reset ports (labeled clk, enable, and reset respectively) into the ports
list. In this example, the clk signal is entered in the Clocks pane, and
the enable and reset signals are deleted from the Ports pane, as shown
in the figures below.

3-38

Incorporating Hardware Designs into a Simulink® Model

8 Auto Fill returns default values for output ports:

• Sample time: 1

• Data type: Inherit

• Fraction length: Inherit

You may need to change these values as required by your model. In this
example, the Sample time should be set to 10 for all outputs. See also
“Specifying the Signal Datatypes” on page 3-43.

9 Note that Auto Fill does not return information for internal signals.
If your Simulink model needs to access such signals, you must enter
them into the Ports pane manually. For example, in the case of
the Manchester Receiver model, you would need to add output port
entries for top/manchester/sync_i, top/manchester/isum_i, and
top/manchester/qsum_i, as shown below.

10 Before closing the HDL Cosimulation block parameters dialog, click Apply
to commit any edits you have made.

3-39

3 Linking Simulink® to Incisive® Simulators

Note When importing VHDL signals, signal names are returned in all
capitals.

Note Enter force commands in the Tcl pane to drive the reset and enable
signals; for example:

force design/reset value time

where value is ’1’ or ’0’ and time is in nanoseconds.

Entering Signal Information Manually. To enter signal information
directly in the Ports pane, perform the following steps:

1 In the HDL simulator, determine the signal path names for the HDL
signals you plan to define in your block.

3-40

Incorporating Hardware Designs into a Simulink® Model

2 In Simulink, open the block parameters dialog for your HDL Cosimulation
block, if it is not already open.

3 Select the Ports tab of the Block Parameters dialog. Simulink displays
the dialog as shown below.

In this pane, you define the HDL signals of your design that you want to
include in your Simulink block and set a sample time and data type for
output ports. The parameters that you should specify on the Ports pane
depend on the type of device the block is modeling as follows:

• For a device having both inputs and outputs: specify block input ports,
block output ports, output sample times and output data types. For
output ports, accept the default or enter an explicit sample time. Data
types can be specified explicitly, or set to Inherit (the default). In the
default case, the output port data type is inherited either from the signal
connected to the port, or derived from the HDL model.

• For a sink device: specify block output ports

• For a source device: specify block input ports

3-41

3 Linking Simulink® to Incisive® Simulators

4 Enter signal path names in the Full HDL name column by double-clicking
on the existing default signal. Use HDL simulator path name syntax (see
“Specifying HDL Signal/Port and Module Paths for Cosimulation” on page
3-29). If you are adding signals, click New and then edit the default values.
Select either Input or Output from the I/O Mode column. If desired, set
the Sample Time, Data Type, and Fraction Length parameters for
signals explicitly, as discussed below.

When you have finished editing clock signals, click Apply to register your
changes with Simulink.

The following dialog shows port definitions for an HDL Cosimulation block.
Note the signal path names match path names that appear in the HDL
simulator wave window.

Note When you define an input port, make sure that only one source is
set up to force input to that port. If multiple sources drive a signal, your
Simulink model may produce unpredictable results.

3-42

Incorporating Hardware Designs into a Simulink® Model

5 You must specify a sample time for the output ports. Simulink uses the
value that you specify, and the current settings of the Timescales pane,
to calculate an actual simulation sample time.

For more information on sample times in the EDA Simulator Link IN
cosimulation environment, see “Representation of Simulation Time” on
page 3-15.

6 You can configure the fixed-point data type of each output port explicitly
if desired, or use a default (Inherited) . In the default case, Simulink
determines the data type for an output port as follows:

If Simulink can determine the data type of the signal connected to the
output port, it applies that data type to the output port. For example,
the data type of a connected Signal Specification block is known by
back-propagation. Otherwise, Simulink queries the HDL simulator to
determine the data type of the signal from the HDL module.

To assign an explicit fixed-point data type to a signal, perform the following
steps:

a Select either Signed or Unsigned from the Data Type column.

b If the signal has a fractional part, enter the Fraction Length.

For example, an 8-bit signal with Signed data type and a Fraction
Length of 5 is assigned the data type sfix8_En5. An Unsigned 16-bit
signal with no fractional part (a Fraction Length of 0) is assigned the
data type ufix16.

7 Before closing the dialog, click Apply to register your edits.

Specifying the Signal Datatypes
The Data Type and Fraction Length parameters apply only to output
signals, as follows:

• The Data Type property is enabled only for output signals. You can direct
Simulink to determine the data type, or you can assign an explicit data type
(with option fraction length). By explicitly assigning a data type, you can
force fixed point data types on output ports of an HDL Cosimulation block.

3-43

3 Linking Simulink® to Incisive® Simulators

• The Fraction Length property specifies the size, in bits, of the fractional
part of the signal in fixed-point representation. The Fraction Length
property is enabled when the signal Data Type property is not set to
Inherit.

The Data Type and Fraction Length properties will apply only to the
following:

• VHDL signals of STD_LOGIC or STD_LOGIC_VECTOR type

• Verilog signals of wire or reg type

Output port data types are determined by the signal width and by the Data
Type and Fraction Length properties of the signal. To assign a port data
type, set the Data Type and Fraction Length properties as follows:

• Select Inherit from the Data Type list if you want Simulink to determine
the data type.

Inherit is the default setting. When Inherit is selected, the Fraction
Length edit field is disabled.

Simulink attempts to compute the data type of the signal connected to the
output port by backward propagation. For example, if a Signal Specification
block is connected to an output, Simulink will force the data type specified
by Signal Specification block on the output port.

If Simulink cannot determine the data type of the signal connected to
the output port, it will query the HDL simulator for the data type of
the port. As an example, if the HDL simulator returns the data type
STD_LOGIC_VECTOR for a VHDL signal of size N bits, the data type ufixN is
forced on the output port. (The implicit fraction length is 0.)

• Select Signed from the Data Type list if you want to explicitly assign
a signed fixed-point data type. When Signed is selected, the Fraction
Length edit field is enabled. The port is assigned a fixed point type
sfixN_EnF, where N is the signal width and F is the Fraction Length.

For example, if you specify Data Type as Signed and a Fraction Length
of 5 for a 16-bit signal, Simulink forces the data type to sfix16_En5. For
the same signal with a Data Type set to Signed and Fraction Length of
-5 , Simulink forces the data type to sfix16_E5.

3-44

Incorporating Hardware Designs into a Simulink® Model

• Select Unsigned from the Data Type list if you want to explicitly assign an
unsigned fixed point data type. When Unsigned is selected, the Fraction
Length edit field is enabled. The port is assigned a fixed point type
ufixN_EnF, where N is the signal width and F is the Fraction Length
value.

For example, if you specify Data Type as Unsigned and a Fraction
Length of 5 for a 16-bit signal, Simulink forces the data type to
ufix16_En5. For the same signal with a Data Type set to Unsigned and
Fraction Length of -5 , Simulink forces the data type to ufix16_E5.

Configuring the Simulink and Cadence Incisive or NC
Simulator Timing Relationship
You configure the timing relationship between Simulink and the HDL
simulator by using the Timescales pane of the block parameters dialog.
Before setting the Timescales parameters, you should read “Representation
of Simulation Time” on page 3-15 to understand the supported timing modes
and the issues that will determine your choice of timing mode.

You can specify either a relative or an absolute timing relationship between
Simulink and the HDL simulator, as described in the sections below.

Specifying a Relative Timing Relationship
To configure relative timing mode for a cosimulation, perform the following
steps:

1 Select the Timescales tab of the HDL Cosimulation block parameters
dialog.

2 Select Tick from the list on the right. (This is the default.)

3 Enter a scale factor in the text box on the left. The default scale factor is 1.

For example, in the figure below, the Timescales pane is configured for a
relative timing correspondence of 10 HDL simulator ticks to 1 Simulink
second.

3-45

3 Linking Simulink® to Incisive® Simulators

4 Click Apply to commit your changes.

Specifying an Absolute Timing Relationship
To configure absolute timing mode for a cosimulation, perform the following
steps:

1 Select the Timescales tab of the HDL Cosimulation block parameters
dialog.

2 Select a unit of absolute time from the list on the right. Available units
are fs, ps, ns, us, ms, and s.

3 Enter a scale factor in the text box on the left. The default scale factor is 1.

For example, in the figure below, the Timescales pane is configured for an
absolute timing correspondence of 1 HDL simulator second to 1 Simulink
second.

4 Click Apply to commit your changes.

Configuring the Communication Link in the HDL
Cosimulation Block
Configure a block’s communication link with the Connection pane of the
block parameters dialog.

3-46

Incorporating Hardware Designs into a Simulink® Model

The following steps guide you through the communication configuration:

1 Determine whether Simulink and the HDL simulator are running on the
same computer. If they are, skip to step 4.

2 Clear the The HDL simulator is running on this computer check box.
(This check box is selected by default.) Note that since Simulink and the
HDL simulator are running on different computers, Connection method
is automatically set to Socket.

3 Enter the hostname of the computer that is running your HDL simulation
(in the HDL simulator) in the Host name text field. In the Port number
or service text field, specify a valid port number or service for your
computer system. For information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page C-2. Skip to step 5.

4 If the HDL simulator and Simulink are running on the same computer,
decide whether you are going to use shared memory or TCP/IP sockets
for the communication channel. For information on the different modes

3-47

3 Linking Simulink® to Incisive® Simulators

of communication, see “Communicating with MATLAB or Simulink and
the HDL Simulator” on page 1-8.

If you choose TCP/IP socket communication, specify a valid port number
or service for your computer system in the Port number or service text
field. For information on choosing TCP/IP socket ports, see “Choosing
TCP/IP Socket Ports” on page C-2.

If you choose shared memory communication, select the Shared memory
check box.

5 If you want to bypass the HDL simulator when you run a Simulink
simulation, use the Connection Mode options to specify what type of
simulation connection you want. Select one of the following:

• Full Simulation: Confirm interface and run HDL simulation (default).

• Confirm Interface Only: Check HDL simulator for proper signal
names, dimensions, and data types, but do not run HDL simulation.

• No Connection: Do not communicate with the HDL simulator. The
HDL simulator does not need to be started.

With the 2nd and 3rd options, EDA Simulator Link IN software does not
communicate with the HDL simulator during Simulink simulation.

6 Click Apply.

The following example dialog shows communication definitions for an HDL
Cosimulation block. The block is configured for Simulink and the HDL
simulator running on the same computer, communicating in TCP/IP socket
mode over TCP/IP port 4449.

3-48

Incorporating Hardware Designs into a Simulink® Model

Specifying Pre- and Post-Simulation Tcl Commands
with HDL Cosimulation Block Parameters Dialog Box
You have the option of specifying Tcl commands to execute before and after
the HDL simulator simulates the HDL component of your Simulink model.
Tcl is a programmable scripting language supported by most HDL simulation
environments. Use of Tcl can range from something as simple as a one-line
puts command to confirm that a simulation is running or as complete as
a complex script that performs an extensive simulation initialization and
startup sequence. For example, the Post- simulation command field on the
Tcl Pane is particularly useful for instructing the HDL simulator to restart at
the end of a simulation run.

You can specify the pre- and post-simulation Tcl commands by entering Tcl
commands in the Pre-simulation commands or Post-simulation commands
text fields of the HDL Cosimulation block.

To specify Tcl commands, perform the following steps:

3-49

3 Linking Simulink® to Incisive® Simulators

1 Select the Tcl tab of the Block Parameters dialog box. The dialog box
appears as follows.

The Pre-simulation commands text box includes an puts command for
reference purposes.

2 Enter one or more commands in the Pre-simulation command and
Post-simulation command text boxes. You can specify one Tcl command
per line in the text box or enter multiple commands per line by appending
each command with a semicolon (;), which is the standard Tcl concatenation
operator.

3 Click Apply.

Programmatically Controlling the Block Parameters
One way to control block parameters is through the HDL Cosimulation
block graphical dialog box. However, you can also control blocks by
programmatically controlling the mask parameter values and the running of
simulations. Parameter values can be read using the Simulink get_param

3-50

Incorporating Hardware Designs into a Simulink® Model

function and written using the Simulink set_param function. All block
parameters have attributes that indicate whether they are:

• Tunable — the attributes can change during the simulation run

• Evaluated — the parameter string value is put through an evaluation to
determine its actual value used by the S-Function

The HDL Cosimulation block does not have any tunable parameters; thus,
you get an error if you try to change a value while the simulation is running,
but it does have a few evaluated parameters.

You can see the list of parameters and their attributes by performing
a right-mouse click on the block, selecting View Mask, and then the
Parameters tab. The Variable column shows the programmatic parameter
names. Alternatively, you can get the names programmatically by selecting
the HDL Cosimulation block and then typing at the MATLAB prompt:

>> get_param(gcb, 'DialogParameters')

Some examples of using MATLAB to control simulations and mask parameter
values follow. Usually, the commands are put into an M-script or M-function
file and automatically called by several callback hooks available to the model
developer. You can place the code in any of these suggested locations, or
anywhere you choose:

• In the model workspace, e.g., View > Model Explorer > Simulink
Root > model_name > Model Workspace > Data Source is M-Code.

• In a model callback, e.g., File > Model Properties > Callbacks.

• A subsystem callback (right-mouse click on an empty subsystem and then
select Block Properties > Callbacks). Many of the EDA Simulator Link
IN demos use this technique to start the HDL simulator by placing M-code
in the OpenFcn callback.

• The HDL Cosimulation block callback (right-mouse click on HDL
Cosimulation block, and then select Block Properties > Callbacks)

Examples
The following examples show the use of programmatically controlling the
HDL Cosimulation block parameters.

3-51

3 Linking Simulink® to Incisive® Simulators

• “Scripting the Value of the Socket Number for HDL Simulator
Communication” on page 3-52

•

Scripting the Value of the Socket Number for HDL Simulator
Communication. In a regression environment, you may need to determine
the socket number for the Simulink/HDL simulator connection during the
simulation to avoid collisions with other simulation runs. This example shows
code that could handle that task. The script is for a 32-bit Linux platform.

ttcp_exec = [matlabroot '/toolbox/shared/hdllink/scripts/ttcp_glnx'];

[status, results] = system([ttcp_exec ' -a']);

if ~s

parsed_result = strread(results,'%s');

avail_port = parsed_result{2};

else

error(results);

end

set_param('MyModel/HDL Cosimulation', 'CommPortNumber', avail_port);

Adding a Value Change Dump (VCD) File
A value change dump (VCD) file logs changes to variable values, such as the
values of signals, in a file during a simulation session. VCD files can be useful
during design verification. Some examples of how you might apply VCD files
include the following cases:

• For comparing results of multiple simulation runs, using the same or
different simulator environments

• As input to post-simulation analysis tools

• For porting areas of an existing design to a new design

VCD files can provide data that you might not otherwise acquire unless you
understood the details of a device’s internal logic. In addition, they include
data that can be graphically displayed or analyzed with postprocessing tools.

For example, including the extraction of data about a particular section of a
design hierarchy or data generated during a specific time interval.

3-52

Incorporating Hardware Designs into a Simulink® Model

The To VCD File block provided in the EDA Simulator Link IN block library
serves as a VCD file generator during Simulink sessions. The block generates
a VCD file that contains information about changes to signals connected to
the block’s input ports and names the file with a specified file name.

Note The To VCD File block logs changes to states '1' and '0' only. The
block does not log changes to states 'X' and 'Z'.

To generate a VCD file, perform the following steps:

1 Open your Simulink model, if it is not already open.

2 Identify where you want to add the To VCD File block. For example, you
might temporarily replace a scope with this block.

3 In the Simulink Library Browser, click the EDA Simulator Link IN block
library.

4 Copy the To VCD File block from the Library Browser to your model by
clicking the block and dragging it from the browser to your model window.

5 Connect the block ports to appropriate blocks in your Simulink model.

Note Because multi-dimensional signals are not part of the VCD
specification, they are flattened to a 1D vector in the file.

6 Configure the To VCD File block by specifying values for parameters in the
Block Parameters dialog, as follows.

a Double-click the block icon. Simulink displays the following dialog.

3-53

3 Linking Simulink® to Incisive® Simulators

b Specify a file name for the generated VCD file in the VCD file name
text box. If you specify a file name only, Simulink places the file in your
current MATLAB directory. Specify a complete path name to place the
generated file in a different location.

Note If you want the generated file to have a .vcd file type extension,
you must specify it explicitly.

Do not give the same file name to different VCD blocks. Doing so results
in invalid VCD files.

c Specify an integer in the Number of input ports text box that indicates
the number of block input ports on which signal data is to be collected.
The block can handle up to 943 (830,584) signals, each of which maps to
a unique symbol in the VCD file.

d Click OK.

3-54

Incorporating Hardware Designs into a Simulink® Model

7 Choose a timing relationship between Simulink and the HDL simulator.
The time scale options specify a correspondence between one second of
Simulink time and some quantity of HDL simulator time. Choose relative
time or absolute time. For more on the To VCD File time scale, see the
reference documentation for the To VCD File block.

8 Run the simulation. Simulink captures the simulation data in the VCD
file as the simulation runs.

For a description of the VCD file format see “VCD File Format” on page 6-26.

3-55

3 Linking Simulink® to Incisive® Simulators

Running Cosimulation Sessions

In this section...

“Starting the HDL Simulator for Use with Simulink” on page 3-56

“Determining an Available Socket Port Number” on page 3-57

“Checking the Connection Status” on page 3-57

“Managing a Simulink Cosimulation Session” on page 3-57

Starting the HDL Simulator for Use with Simulink
The options available for starting the HDL simulator for use with Simulink
vary depending on whether you run the HDL simulator and Simulink on
the same computer system.

If both tools are running on the same system, start the HDL simulator directly
from MATLAB by calling the MATLAB function nclaunch. Alternatively, you
can start the HDL simulator manually and load the EDA Simulator Link™ IN
libraries yourself. Either way, see “Starting the HDL Simulator” on page 1-24.

Loading an HDL Module for Cosimulation
After you start the HDL simulator from MATLAB, load an instance of an HDL
module for cosimulation with the HDL simulator command hdlsimulink.
Issue the command for each instance of an HDL module in your model that
you want to cosimulate. For example:

hdlsimulink work.manchester

This command opens a simulation workspace for manchester and displays a
series of messages in the HDL simulator command window as the simulator
loads the HDL module’s packages and architectures.

3-56

Running Cosimulation Sessions

Determining an Available Socket Port Number

Checking the Connection Status
You can check the connection status by clicking the Update diagram button

or by selecting Edit > Update Diagram. If there is a connection error,
Simulink will notify you.

The MATLAB command pingHdlSim can also be used to check the connection
status. If a -1 is returned, then there is no connection with the HDL simulator.

Managing a Simulink Cosimulation Session
To run and test a cosimulation model in Simulink, click Simulation > Start

or the Start Simulation button in your Simulink model window. Simulink
runs the model and displays any errors that it detects.

If you need to reset a clock during a cosimulation, you can do so by entering
HDL simulator force commands at the HDL simulator command prompt
or by specifying HDL simulatorforce commands in the Post- simulation
command text field on the Tcl pane of your EDA Simulator Link IN
Cosimulation block’s parameters dialog.

If you change any part of the Simulink model, including the HDL
Cosimulation block parameters, re-run the simulation or click the Update

diagram button or select Edit > Update Diagram so that the diagram
reflects those changes.

3-57

3 Linking Simulink® to Incisive® Simulators

3-58

4

EDA Simulator Link™
IN MATLAB® Function
Reference

dec2mvl

Purpose Convert decimal integer to binary string

Syntax dec2mvl(d)
dec2mvl(d,n)

Description dec2mvl(d) returns the binary representation of d as a multivalued
logic string. d must be an integer smaller than 2^52.

dec2mvl(d,n) produces a binary representation with at least n bits.

Examples The following function call returns the string ’10111’:

dec2mvl(23)

The following function call returns the string ’01001’:

dec2mvl(-23)

The following function call returns the string ’11101001’:

dec2mvl(-23,8)

See Also mvl2dec

4-2

hdldaemon

Purpose Start MATLAB server component of EDA Simulator Link™ IN interface

Syntax hdldaemon
hdldaemon('PropertyName', 'PropertyValue'...)
hdldaemon('status')
hdldaemon('kill')

Description Server Activation
hdldaemon starts the MATLAB server component of the EDA
Simulator Link IN software with the following default settings:

• Shared memory communication enabled

• Time resolution for the MATLAB simulation function output
ports set to scaled (type double)

Although you can use TCP/IP on a single system (one that is
running both MATLAB and the HDL simulator), using shared
memory communication when your application configuration
consists of a single system can result in increased performance.

Only one hdldaemon per MATLAB session can be running at any
given time.

Matching Communication Modes and Socket Ports

The communication mode that you specify (shared memory
or TCP/IP sockets) must match what you specify for the
communication mode when you issue the matlabcp, matlabtb, or
matlabtbeval command in the HDL simulator.

In addition, if you specify TCP/IP socket mode, you must also
identify a socket port to be used for establishing links. You can
choose and specify a socket port yourself, or you can use an option
that instructs the operating system to identify an available socket
port for you. Regardless of how the socket port is identified, the

4-3

hdldaemon

socket you specify with the HDL simulator must match the socket
being used by the server.

For more information on modes of communication, see
“Communicating with MATLAB or Simulink and the HDL
Simulator” on page 1-8. For more information on establishing the
HDL simulator end of the communication link, see “Associating a
MATLAB® Link Function with an HDL Module” on page 2-36.

hdldaemon('PropertyName', 'PropertyValue'...) starts
the EDA Simulator Link IN MATLAB server component with
property-value pair settings that specify the communication
mode for the link between MATLAB and the HDL simulator,
the resolution of tnow (the current time argument passed by
the associated m-function), and, optionally, a Tcl command to
be executed immediately in the HDL simulator. See hdldaemon
“Property Name/Property Value Pairs” on page 4-5 for details.

Link Status
hdldaemon('status') returns the following message indicating
that a link (connection) exists between MATLAB and the HDL
simulator:

HDLDaemon socket server is running on port 4449 with 0 connections

You can also use this function to check on the communication
mode being used, the number of existing connections, and the
interprocess communication identifier (ipc_id) being used for a
link by assigning the return value of hdldaemon to a variable. The
ipc_id identifies a port number for TCP/IP socket links or the
file system name for a shared memory communication channel.
For example:

x=hdldaemon('status')
x =

comm: 'sockets'
connections: 0

ipc_id: '4449'

4-4

hdldaemon

This function call indicates that the server is using TCP/IP socket
communication with socket port 4449 and is running with no
active HDL simulator clients. If a shared memory link is in use,
the value of comm is 'shared memory' and the value of ipc_id
is a file system name for the shared memory communication
channel. For example:

x=hdldaemon('status')

HDLDaemon shared memory server is running with 0 connections

x =

comm: 'shared memory'

connections: 0

ipc_id: [1x45 char]

Server Shutdown
hdldaemon('kill') shuts down the MATLAB server without
shutting down MATLAB.

Property
Name/
Property
Value
Pairs

The following property name/property value pairs are valid for
hdldaemon:

'socket', tcp_spec
Specifies the TCP/IP socket mode of communication for the
link between MATLAB and the HDL simulator. If you omit
this argument, the server uses the shared memory mode of
communication.

Note You must use TCP/IP socket communication when your
application configuration consists of multiple computing systems.

The tcp_spec can be a TCP/IP port number, TCP/IP port alias or
service name, or the value zero, indicating that the port is to be
assigned by the operating system. See “Specifying TCP/IP Values”
on page C-5 for some valid tcp_spec examples.

4-5

hdldaemon

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page C-2.

Note If you specify the operating system option ('0' or 0),
use hdldaemon('status') to acquire the assigned socket port
number. You must specify this port number when you issue a
link request with the matlabtb or matlabtbeval command in
the HDL simulator.

'time', 'sec' | 'time', 'int64'
Specifies the time resolution for MATLAB function ports and
simulation times (tnow).

Specify... For...

'time' 'sec'
(default)

A double value that is scaled to
seconds based on the current HDL
simulation resolution

'time' 'int64' 64-bit integer representing the
number of simulation steps

If you omit this argument, the server uses scaled resolution time.

'tclcmd', 'command'
Passes a TCL command string, to be executed in the HDL
simulator, from MATLAB to the HDL simulator. You may use a
compound command and separate the commands with semicolons.

Note The TCL command string you specify cannot include
commands that load an HDL simulator project or modify
simulator state. For example, they cannot include commands such
as start, stop, or restart.

4-6

hdldaemon

'quiet', 'true'
Suppresses printing messages to the standard queue. Errors are
still shown.

The following table provides guidelines on when and how to specify
property name/property value pairs.

If Your Application Is
to...

Do the Following...

Operate in shared
memory mode

Omit the 'socket', tcp_spec property
name/property value pair. The interface
operates in shared memory mode by
default. You should use shared memory
mode if your application configuration
consists of a single system and uses a
single communication channel.

Operate in TCP/IP
socket mode, using a
specific TCP/IP socket
port

Specify the 'socket', tcp_spec property
name and value pair. The tcp_spec can
be a socket port number or service name.
Examples of valid port specifications
include '4449', 4449, and MATLAB
Service. For information on choosing a
TCP/IP socket port, see “Choosing TCP/IP
Socket Ports” on page C-2.

Operate in TCP/IP
socket mode, using a
TCP/IP socket that
the operating system
identifies as available

Specify 'socket', 0 or 'socket', '0'.

Return time values in
seconds (type double)

Specify 'time', 'sec' or omit the
parameter. This is the default time value
resolution.

Return 64-bit time
values (type int64)

Specify 'time', 'int64' .

4-7

hdldaemon

If Your Application Is
to...

Do the Following...

Execute Tcl command
immediately upon
simulator connection

Specify the 'tclcmd', 'command'
property name and value pair. Command
must be a valid Tcl command but cannot
include commands that load an HDL
simulator project or modify the simulator
state.

Suppress server
shutdown message
when using hdldaemon
to get an unused socket
number (message can
appear confusing)

Specify 'quiet', 'true'.

Examples The following function call starts the MATLAB server with shared
memory communication enabled and a 64-bit time resolution format for
the MATLAB function’s tnow parameter:

hdldaemon('time', 'int64')

The following function call starts the MATLAB server with TCP/IP
socket communication enabled on socket port 4449. Although it is not
necessary to use TCP/IP socket communication on a single-computer
application, you can use that mode of communication locally. A time
resolution is not specified. Thus, the default, scaled simulation time
resolution is applied to the MATLAB function’s output ports:

hdldaemon('socket', 4449)

The following function call starts the MATLAB server with TCP/IP
socket communication enabled on port 4449. A 64-bit time resolution
format is also specified:

hdldaemon('socket', 4449, 'time', 'int64')

4-8

hdldaemon

You also can start the server from a script. Consider the following
function call sequence:

dstat = hdldaemon('socket', 0)
portnum = dstat.ipc_id

The first call to hdldaemon specifies that the server use TCP/IP
communication with a port number that the operating system identifies
and returns connection status information, including the assigned port
number, to dstat. The statement on the second line assigns the socket
port number to portnum for future reference.

The following function call causes the string This is a test to be
displayed at the HDL simulator prompt:

hdldaemon('tclcmd','puts "This is a test"')

The following is an example of a compound Tcl command used with
hdldaemon:

hdldaemon('tclcmd','{force filter2d_v.clk_enable 1

-after 0ns;

force filter2d_v.reset 1 -after 0 ns 0 -after 1 ns;

puts {Running Simulink Cosimulation block};

puts [clock format [clock seconds]]}')

4-9

mvl2dec

Purpose Convert multivalued logic to decimal

Syntax mvl2dec('multivalued_logic_string')
mvl2dec('multivalued_logic_string', signed)

Description mvl2dec('multivalued_logic_string') converts a multivalued
logic string multivalued_logic_string to a positive decimal. If
multivalued_logic_string contains any character other than '0' or '1',
NaN is returned. multivalued_logic_string must be a vector.

mvl2dec('multivalued_logic_string', signed) converts a
multivalued logic string multivalued_logic_string to a positive or
a negative decimal. If signed is true, this function assumes the
first character multivalued_logic_string(1) to be a signed bit of a 2s
complement number. If signed is missing or false, the multivalued logic
string is converted to a positive decimal.

Examples The following function call returns the decimal value 23:

mvl2dec('010111')

The following function call returns NaN:

mvl2dec('xxxxxx')

The following function call returns the decimal value -9:

mvl2dec('10111',true)

See Also dec2mvl

4-10

nclaunch

Purpose Start and configure Incisive simulators for use with EDA Simulator
Link™ IN software

Syntax nclaunch('PropertyName', 'PropertyValue'...)

Description nclaunch('PropertyName', 'PropertyValue'...) starts the Incisive
simulator for use with the MATLAB and Simulink features of the
EDA Simulator Link IN software. The first directory in the Incisive
simulator matches your MATLAB current directory if no explicit rundir
parameter is specified.

After you call this function, you can use EDA Simulator Link IN
command extensions to do interactive debug setup.

The property name/property value pair settings allow you to customize
the Tcl commands used to start the Incisive simulator, the ncsim
executable to be used, the path and name of the Tcl script that stores
the start commands, and for Simulink applications, details about the
mode of communication to be used by the applications. You must use a
property name/property value pair with nclaunch.

Property
Name/
Property
Value
Pairs

'hdlsimdir', 'pathname'
Specifies the path name to the Incisive simulator executable
to be started. By default, the function uses the first version of
the simulator that it finds on the system path (defined by the
path variable) . Use this option to start different versions of the
Incisive simulator or if the version of the simulator you want to
run does not reside on the system path.

'hdlsimexe', 'simexename'
Specifies the name of an Incisive simulator executable. By default,
this function uses 'ncsim'. You can specify a custom-built
simulator executable with 'simexename.'

'libdir', 'directory'
Specifies the directory containing MATLAB shared libraries. This
property creates an entry in the startup Tcl file that points to
the directory with the shared libraries needed for the Incisive

4-11

nclaunch

simulator to communicate with MATLAB when the Incisive
simulator is running on a machine that does not have MATLAB.

'rundir', 'dirname'
Specifies where to run the HDL simulator. By default, the
function uses the current working directory.

The following conditions apply to this name/value pair:

• If dirname is specified and the directory exists, the HDL
simulator is run in the specified directory.

• If no rundir property/value pair is specified or if dirname
is empty, the HDL simulator is run in the current working
directory.

• If the value of dirname is “TEMPDIR”, the function creates a
temporary directory in which it runs the HDL simulator.

• If dirname is specified and the directory does not exist, you
will get an error.

'startupfile', 'pathname'
Specifies a Tcl script that defines the behavior of the Incisive
simulator commands hdlsimmatlab and hdlsimulink. The
Tcl script consists of some general-purpose Tcl commands for
launching the Incisive simulator and any commands you specify
with the 'tclstart' property. If you omit this property, the
function creates a temporary file each time the Incisive simulator
starts. If you specify a name for the Tcl script, later you can use
the file to start the Incisive simulator from a system shell as
shown in the following syntax:

tclsh tcl_scriptname

'socketsimulink', 'tcp_spec'
Specifies TCP/IP socket communication for links between the
Incisive simulator and Simulink. See “Specifying TCP/IP Values”
on page C-5 for valid TCP/IP examples. For more information

4-12

nclaunch

on choosing TCP/IP socket ports, see “Choosing TCP/IP Socket
Ports” on page C-2.

If the Incisive simulator and Simulink are running on the same
computing system, you have the option of using shared memory
for communication. Shared memory is the default mode of
communication and takes effect if you omit -socketsimulink
tcp_spec from the function call.

'starthdlsim', ['yes' | 'no']
Determines whether the Incisive simulator is launched. The
default is yes, which launches the Incisive simulator and creates a
startup Tcl file. If starthdlsim is set to no, the Incisive simulator
is not launched, but a startup Tcl file is still created.

This startup Tcl file contains pointers to MATLAB and Simulink
shared libraries. To run the Incisive simulator manually, see
“Starting the HDL Simulator” on page 1-24.

'tclstart', 'tcl_commands'
Specifies one or more Tcl commands to execute before the Incisive
simulator launches. Specify a command string or a cell array
of command strings. You must specify at least one command;
otherwise, no action occurs.

Note You must put “exec” in front of non-Tcl system shell
commands. For example:

exec -ncverilog -c +access+rw +linedebug top.v
hdlsimulink -gui work.top

Examples The following function call sequence compiles the design and starts
Simulink with a GUI from the “proj” directory with the model loaded.
Simulink is instructed to communicate with the EDA Simulator Link

4-13

nclaunch

IN interface on socket port 4449. All of these commands are specified in
a single string as the property value to tclstart.

nclaunch(...
'tclstart',...
{'exec ncverilog -c +access+rw +linedebug top.v',...
'hdlsimulink -gui work.top'},...
'socketsimulink','4449',...
'rundir', '/proj');

In this next example, tclcmd is used to build the sequence of Tcl
commands that are executed in a Tcl shell after calling nclaunch from
MATLAB, as follows:

• tclcmd{1} compiles vlogtestbench_top.

• tclcmd{2} elaborates the model.

• tclcmd{3} calls hdlsimmatlab in gui mode and loads the elaborated
vlogtestbench_top in the simulator.

The arguments being passed with -input (matlabtb and run) are
executed in the ncsim Tcl shell. In this example, matlabcp associates the
m-function vlogmatlabc to the module instance u_matlab_component.
It assumes that the hdldaemon in MATLAB is listening on port 32864.
run will run 50 resolution units (ticks).

tclcmd{1} = 'exec ncvlog vlogtestbench_top.v'

tclcmd{2} = 'exec ncelab -access +wc vlogtestbench_top'

tclcmd{3} = ['hdlsimmatlab -gui vlogtestbench_top ' ...

'-input "{@matlabcp vlogtestbench_top.u_matlab_component...

-mfunc vlogmatlabc -socket 32864}" '...

'-input "{@run 50}"']

nclaunch('hdlsimdir', 'local.IUS.glnx.tools.bin', 'tclstart',tclcmd);

The following example shows using the property startupfile to
designate a Tcl script that is then used to start the HDL simulator
from the Tcl shell.

4-14

nclaunch

In MATLAB:

nclaunch (`tclstart', `xxx', `startupfile', `mytclscript',...

`starthdlsim', `no')

In Tcl shell:

shell> tclsh mytclscript

4-15

pingHdlSim

Purpose Block cosimulation until HDL simulator is ready

Syntax pingHdlSim(timeout)
pingHdlSim(timeout, 'portnumber')
pingHdlSim(timeout, 'portnumber', 'hostname')

Description pingHdlSim(timeout) blocks cosimulation by not returning until
the Simulink server is loaded or until the specified timeout occurs.
pingHdlSim returns the process ID of the HDL simulator or -1 if a
timeout occurs. You must enter a timeout value.

This function is useful if you are trying to automate a cosimulation
and you need to know that the Simulink server has loaded before your
script continues the simulation.

pingHdlSim(timeout, 'portnumber') tries to connect to the local host
on port portnumber, and times out after timeout seconds you specify.

pingHdlSim(timeout, 'portnumber', 'hostname') tries to connect
to the host hostname on port portname. It times out after timeout
seconds you specify.

Examples The following function call blocks further cosimulation until the
Simulink server is loaded or until 30 seconds have passed:

pingHdlSim(30)

If the server loads within 30 seconds, pingHdlSim returns the process
ID. If it does not, pingHdlSim returns -1.

The following function call blocks further cosimulation on port 5678
until the Simulink server is loaded or until 20 seconds have passed:

pingHdlSim(20, '5678')

4-16

pingHdlSim

The following function call blocks further cosimulation on port 5678
on hostname msuser until the Simulink server is loaded or until 20
seconds have passed:

pingHdlSim(20, '5678', 'msuser')

4-17

tclHdlSim

Purpose Execute Tcl command in HDL simulator

Syntax tclHdlSim(tclCmd)
tclHdlSim(tclCmd,'portNumber')
tclHdlSim(tclCmd, 'portnumber', 'hostname')

Description tclHdlSim(tclCmd) executes a Tcl command on the HDL simulator
using a shared connection.

tclHdlSim(tclCmd,'portNumber') executes a Tcl command on the
HDL simulator by connecting to the local host on port portNumber.

tclHdlSim(tclCmd, 'portnumber', 'hostname') executes a Tcl
command on the HDL simulator by connecting to the host hostname on
port portname.

The HDL simulator must be connected to MATLAB using the EDA
Simulator Link™ IN software for this function to work (see “Starting
the HDL Simulator” on page 1-24. If you start from within MATLAB,
you must use hdlsimmatlab.).

Examples The following function call displays a message in the HDL simulator
command window using port 5678 on hostname msuser:

tclHdlSim('puts "Done"', '5678', 'msuser')

4-18

5

EDA Simulator Link™
IN Command Extensions
for the HDL Simulator
Reference

hdlsimmatlab

Purpose Load instantiated HDL design for verification with MATLAB

Syntax hdlsimmatlab <instance> [<ncsim_args>]

Arguments <instance>
Specifies the instance of an HDL design to load for verification.

<ncsim_args>
Specifies one or more ncsim command arguments. For details, see
the description of ncsim in the Incisive simulator documentation.

Description The hdlsimmatlab command loads the specified instance of an HDL
design for verification and sets up the Incisive simulator so it can
establish a communication link with MATLAB. The Incisive simulator
opens a simulation workspace as it loads the HDL design.

This command may be run from the HDL simulator prompt or from
a Tcl script shell (tclsh).

Examples The following command loads the module instance parse from library
work for verification and sets up the Incisive simulator so it can
establish a communication link with MATLAB:

tclshell> hdlsimmatlab work.parse

5-2

hdlsimulink

Purpose Load instantiated HDL design for cosimulation with Simulink

Syntax hdlsimulink [<ncsim_args>] <instance>
[-socket <tcp_spec>]

Argument <ncsim_args>
Specifies one or more ncsim command arguments. At a minimum,
either -gui or -tcl is required. If you specify -gui, the Simulink
GUI will be launched when the HDL design is loaded. If you
specify -tcl, a Tcl script shell is launched instead. If you do not
specify either of these arguments, the HDL simulator runs the
simulation without Simulink. Other valid ncsim arguments may
be specified in addition to -gui or -tcl. For more information
on -gui, -tcl, or other ncsim arguments, see the description of
ncsim in the Incisive simulator documentation.

<instance>
Specifies the instance of an HDL design to load for cosimulation.

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between
the Incisive simulator and MATLAB. This setting overrides the
setting specified with the MATLAB nclaunch function. The
<tcp_spec> can consist of a TCP/IP socket port number or service
name (alias). For example, you might specify port number 4449 or
the service name matlabservice.

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page C-2.

If the Incisive simulator and MATLAB are running on the
same computer, you have the option of using shared memory
for communication. Shared memory is the default mode of
communication and takes effect if you omit -socket <tcp-spec>
from the command line.

5-3

hdlsimulink

Note The communication mode that you specify with the
hdlsimulink command must match what you specify for the
communication mode when you configure EDA Simulator Link™
IN blocks in your Simulink model. For more information on
modes of communication, see “Communicating with MATLAB
or Simulink and the HDL Simulator” on page 1-8. For
more information on establishing the Simulink end of the
communication link, see “Configuring the Communication Link in
the HDL Cosimulation Block” on page 3-46.

Description The hdlsimulink command loads the specified instance of an HDL
design for cosimulation and sets up the Incisive simulator so it can
establish a communication link with Simulink. The Incisive simulator
opens a simulation workspace into which it loads the HDL design.

Examples The following command loads the module instance parse from library
work for cosimulation, sets up the Incisive simulator so it can establish
a communication link with Simulink, and opens a Tcl script shell:

tclshell> hdlsimulink -gui work.parse

5-4

matlabcp

Purpose Associate MATLAB component function with instantiated HDL design

Syntax matlabcp <instance>
[<time-specs>]
[-socket <tcp-spec>]
[-rising <port>[,<port>...]]
[-falling <port> [,<port>,...]]
[-sensitivity <port>[,<port>,...]]
[-mfunc <name>]

Arguments <instance>
Specifies an instance of an HDL design that is associated with
a MATLAB function. By default, matlabcp associates the
instance to a MATLAB function that has the same name as the
instance. For example, if the instance is myfirfilter, matlabcp
associates the instance with the MATLAB function myfirfilter.
Alternatively, you can specify a different MATLAB function with
-mfunc.

Note Note Do not specify an instance of an HDL module that has
already been associated with a MATLAB test bench function (via
matlabcp or matlabtb). If you do, the new association overwrites
the existing one.

<time-specs>
Specifies a combination of time specifications consisting of any or
all of the following:

5-5

matlabcp

<timen>,... Specifies one or more discrete time values
at which the specified MATLAB function
is called. Each time value is relative
to the current simulation time. The
MATLAB function is always called once at
the start of the simulation, even if you do
not specify a time. Multiple time values
are separated by a space, for example:
matlabcp vlogtestbench_top 1e6 fs
3 2e3 ps -repeat 3 ns -cancel 7ns

-repeat <time> Specifies that the MATLAB function be
called repeatedly based on the specified
<timen>,... pattern. The time values
are relative to the value of tnow at the
time the MATLAB function is first called.

-cancel <time> Specifies a time at which the specified
MATLAB function stops executing. The
time value is relative to the value of tnow
at the time the MATLAB function is first
called. If you do not specify a cancel time,
the command calls the MATLAB function.

Note Time specifications must be placed after the matlabcp
instance and before any additional command arguments;
otherwise the time specifications are ignored.

All time specifications for the matlabcp functions are represented
by a number and optionally a time unit:

• fs (femtoseconds)

• ps (picoseconds)

• ns (nanoseconds)

5-6

matlabcp

• us(microseconds)

• ms(milliseconds)

• sec (seconds)

• no units (tick)

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between the
HDL simulator and MATLAB. For TCP/IP socket communication
on a single computer, the <tcp_spec> argument can consist of just
a TCP/IP port number or service name (alias). If you are setting
up communication between computers, you must also specify the
name or Internet address of the remote host that is running the
MATLAB server (hdldaemon). See “Specifying TCP/IP Values” on
page C-5 for some valid tcp_spec examples.

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page C-2.

If the HDL simulator and MATLAB are running on the
same computer, you have the option of using shared memory
for communication. Shared memory is the default mode of
communication and takes effect if you omit -socket <tcp_spec>
from the command line.

Note The communication mode that you specify with the
matlabcp command must match what you specify for the
communication mode when you issue the hdldaemon command in
MATLAB.

For more information on modes of communication, see
“Communicating with MATLAB or Simulink and the HDL
Simulator” on page 1-8. For more information on establishing
the MATLAB end of the communication link, see “Starting the
MATLAB Server” on page 2-48.

5-7

matlabcp

-rising <signal>[, <signal>...]
Indicates that the specified MATLAB function is called on the
rising edge (transition from '0' to '1') of any of the specified
signals. For determining signal transition in:

• Verilog: Z and X are read as 0

• VHDL: Z and X will not create a rate transition

Rate transitions are only from 0 -> 1 and 1-> 0. Specify -rising
with the path names of one or more signals defined as a logic type.

-falling <signal>[, <signal>...]
Indicates that the specified MATLAB function is called when any
of the specified signals experiences a falling edge—changes from
'1' to '0'. Specify -falling with the path names of one or more
signals defined as a logic type.

-sensitivity <signal>[, <signal>...]
Indicates that the specified MATLAB function is called when any
of the specified signals changes state. Specify -sensitivity with
the path names of one or more signals. Signals in the sensitivity
list can be any type and can be at any level in the hierarchy of
the HDL model.

-mfunc <name>
The name of the MATLAB function that is associated with the
HDL module instance you specify for instance. If you omit this
argument, matlabcp associates the HDL module instance to a
MATLAB function that has the same name as the HDL instance.
For example, if the HDL module instance is myfirfilter,
matlabcp associates the HDL module instance with the MATLAB
function myfirfilter. If you omit this argument and matlabcp
does not find a MATLAB function with the same name, the
command generates an error message.

5-8

matlabcp

Description The matlabcp command has the following characteristics:

• Starts the HDL simulator client component of the EDA Simulator
Link™ IN software.

• Associates a specified instance of an HDL design created in the HDL
simulator with a MATLAB function.

• Creates a process that schedules invocations of the specified
MATLAB function.

• Cancels any pending events scheduled by a previous matlabcp
command that specified the same instance. For example, if you issue
the command matlabcp for instance foo, all previously scheduled
events initiated by matlabcp on foo are canceled.

MATLAB component functions simulate the behavior of modules in the
HDL model. A stub module (providing port definitions only) in the HDL
model passes its input signals to the MATLAB component function. The
MATLAB component processes this data and returns the results to the
outputs of the stub module. A MATLAB component typically provides
some functionality (such as a filter) that is not yet implemented in
the HDL code. See “Coding an EDA Simulator Link™ IN MATLAB®

Application” on page 2-4.

Note For the HDL simulator to establish a communication link with
MATLAB, the MATLAB server, hdldaemon, must be running with the
same communication mode and, if appropriate, the same TCP/IP socket
port as you specify with the matlabcp command.

Examples This example associates the Verilog module
vlogtestbench_top.u_matlab_component with the MATLAB function
vlogmatlabc using socket communication on port 4449. The '-mfunc'
option specifies the m-function to connect to and '-socket' option
specifies the port number for socket connection mode.

matlabcp vlogtestbench_top.u_matlab_component -mfunc vlogmatlabc -socket 4449

5-9

matlabcp

This example also associates the component with the MATLAB function
but includes explicit times and uses the -cancel option.

matlabcp vlogtestbench_top 1e6 fs 3 2e3 ps -repeat 3 ns -cancel 7ns

This example also associates the component with the MATLAB function
and also uses rising and falling edges.

matlabcp vlogtestbench_top 1 2 3 4 5 6 7 -rising outclk3 -falling u_ma

5-10

matlabtb

Purpose Schedule MATLAB test bench session for instantiated HDL module

Syntax matlabtb <instance>
[<time-specs>]
[-socket <tcp-spec>]
[-rising <port>[,<port>...]]
[-falling <port> [,<port>,...]]
[-sensitivity <port>[,<port>,...]]
[-mfunc <name>]

Arguments <instance>
Specifies the instance of an HDL module that is to be associated
with a MATLAB test bench function. By default, matlabtb
associates the instance with a MATLAB function that has
the same name as the instance. For example, if the instance
is myfirfilter, matlabtb associates the instance with the
MATLAB function myfirfilter. Alternatively, you can specify a
different MATLAB function with -mfunc.

Note Note Do not specify an instance of an HDL module that has
already been associated with a MATLAB component function (via
matlabcp or matlabtb). If you do, the new association overwrites
the existing one.

<time-specs>
Specifies a combination of time specifications consisting of any or
all of the following:

5-11

matlabtb

<timen>,... Specifies one or more discrete time values
at which the specified MATLAB function
is called. Each time value is relative to
the current simulation time. Even if you
do not specify a time, the command calls
the MATLAB function once at the start
of the simulation. Multiple time values
are separated by a space, for example:
matlabtb vlogtestbench_top 1e6 fs
3 2e3 ps -repeat 3 ns -cancel 7ns

-repeat <time> Specifies that the MATLAB function be
called repeatedly based on the specified
<timen>,... pattern. The time values
are relative to the value of tnow at the
time the MATLAB function is first called.

-cancel <time> Specifies a time at which the specified
MATLAB function stops executing. The
time value is relative to the value of tnow
at the time the MATLAB function is first
called. If you do not specify a cancel time,
the command calls the MATLAB function.

Note Time specifications must be placed after the matlabtb
instance and before any additional command arguments;
otherwise the time specifications are ignored.

All time specifications for the matlabtb functions are represented
by a number and optionally a time unit:

• fs (femtoseconds)

• ps (picoseconds)

• ns (nanoseconds)

5-12

matlabtb

• us(microseconds)

• ms(milliseconds)

• sec (seconds)

• no units (tick)

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between the
HDL simulator and MATLAB. For TCP/IP socket communication
on a single computer, the <tcp_spec> can consist of just a
TCP/IP port number or service name (alias). If you are setting up
communication between computers, you must also specify the
name or Internet address of the remote host that is running the
MATLAB server (hdldaemon). See “Specifying TCP/IP Values” on
page C-5 for some valid tcp_spec examples.

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page C-2.

If the HDL simulator and MATLAB are running on the
same computer, you have the option of using shared memory
for communication. Shared memory is the default mode of
communication and takes effect if you omit -socket <tcp_spec>
from the command line.

Note The communication mode that you specify with the
matlabtb command must match what you specify for the
communication mode when you issue the hdldaemon command
in MATLAB. For more information on modes of communication,
see “Communicating with MATLAB or Simulink and the HDL
Simulator” on page 1-8. For more information on establishing
the MATLAB end of the communication link, see “Starting the
MATLAB Server” on page 2-48.

5-13

matlabtb

-rising <signal>[, <signal>...]
Indicates that the specified MATLAB function is called on the
rising edge (transition from '0' to '1') of any of the specified
signals. Specify -rising with the path names of one or more
signals defined as a logic type.

-falling <signal>[, <signal>...]
Indicates that the specified MATLAB function is called when any
of the specified signals experiences a falling edge—changes from
'1' to '0'. Specify -falling with the path names of one or more
signals defined as a logic type.

-sensitivity <signal>[, <signal>...]
Indicates that the specified MATLAB function is called when any
of the specified signals changes state. Specify -sensitivity with
the path names of one or more signals. Signals in the sensitivity
list can be any type and can be at any level of the HDL design.

-mfunc <name>
The name of the associated MATLAB function. If you omit this
argument, matlabtb associates the HDL module instance to a
MATLAB function that has the same name as the HDL instance.
For example, if the HDL module instance is myfirfilter,
matlabtb associates the HDL module instance with the MATLAB
function myfirfilter. If you omit this argument and matlabtb
does not find a MATLAB function with the same name, the
command generates an error message.

Description The matlabtb command has the following characteristics:

• Starts the HDL simulator client component of the EDA Simulator
Link™ IN software.

• Associates a specified instance of an HDL design created in the HDL
simulator with a MATLAB function.

• Creates a process that schedules invocations of the specified
MATLAB function.

5-14

matlabtb

• Cancels any pending events scheduled by a previous matlabtb
command that specified the same instance. For example, if you issue
the command matlabtb for instance foo, all previously scheduled
events initiated by matlabtb on foo are canceled.

MATLAB test bench functions mimic stimuli passed to entities in the
HDL model. You force stimulus from MATLAB or HDL scheduled with
matlabtb.

Note For the HDL simulator to establish a communication link with
MATLAB, the MATLAB server, hdldaemon, must be running with the
same communication mode and, if appropriate, the same TCP/IP socket
port as you specify with the matlabtb command.

Examples The following command starts the Incisive simulator client component
of the EDA Simulator Link IN software, associates an instance of the
module myfirfilter with the MATLAB function myfirfilter, and
begins a local TCP/IP socket-based test bench session using TCP/IP
port 4449. Based on the specified test bench stimuli, myfirfilter.m
executes 5 nanoseconds from the current time, and then repeatedly
every 10 nanoseconds:

ncsim> matlabtb myfirfilter 5 ns -repeat 10 ns -socket 4449

The following command starts the Incisive simulator client component
of the EDA Simulator Link IN software, and begins a remote TCP/IP
socket-based session using remote MATLAB host compa and TCP/IP
port 4449. Based on the specified test bench stimuli, myfirfilter.m
executes 10 nanoseconds from the current time, each time signal
work.fclk experiences a rising edge, and each time signal work.din
changes state.

ncsim> matlabtb myfirfilter 10 ns -rising top.fclk
-sensitivity top.din -socket 4449@compa

5-15

matlabtb

The following command starts the Incisive simulator client component
of the EDA Simulator Link IN software. The '-mfunc' option specifies
the m-function to connect to and '-socket' option specifies the port
number for socket connection mode. '-sensitivity' indicates that the
test bench session is sensitized to the signal sine_out.

ncsim>matlabtb osc_top -sensitivity osc_top.sine_out
-socket 4448 -mfunc hosctb

5-16

matlabtbeval

Purpose Call specified MATLAB function once and immediately on behalf of
instantiated HDL module

Syntax matlabtbeval <instance> [-socket <tcp_spec>]
[-mfunc <name>]

Arguments <instance>
Specifies the instance of an HDL module that is associated with
a MATLAB function. By default, matlabtbeval associates the
HDL module instance with a MATLAB function that has the
same name as the HDL module instance. For example, if the HDL
module instance is myfirfilter, matlabtbeval associates the
HDL module instance with the MATLAB function myfirfilter.
Alternatively, you can specify a different MATLAB function with
the -mfunc property.

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between the
HDL simulator and MATLAB. For TCP/IP socket communication
on a single computer, the <tcp_spec> can consist of just a
TCP/IP port number or service name (alias). If you are setting up
communication between computers, you must also specify the
name or Internet address of the remote host. See “Specifying
TCP/IP Values” on page C-5 for some valid tcp_spec examples.

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page C-2.

If the HDL simulator and MATLAB are running on the
same computer, you have the option of using shared memory
for communication. Shared memory is the default mode of
communication and takes effect if you omit -socket <tcp-spec>
from the command line.

5-17

matlabtbeval

Note The communication mode that you specify with the
matlabtbeval command must match what you specify for the
communication mode when you call the hdldaemon command
to start the MATLAB server. For more information on
communication modes, see “Communicating with MATLAB
or Simulink and the HDL Simulator” on page 1-8. For
more information on establishing the MATLAB end of the
communication link, see “Starting the MATLAB Server” on page
2-48.

-mfunc <name>
The name of the associated MATLAB function. If you omit this
argument, matlabtbeval associates the HDL module instance
with a MATLAB function that has the same name as the HDL
module instance. For example, if the HDL module instance is
myfirfilter, matlabtbeval associates the HDL module instance
with the MATLAB function myfirfilter . If you omit this
argument and matlabtbeval does not find a MATLAB function
with the same name, the command displays an error message.

Description The matlabtbeval command has the following characteristics:

• Starts the HDL simulator client component of the EDA Simulator
Link™ IN software.

• Associates a specified instance of an HDL design created in the HDL
simulator with a MATLAB function.

• Executes the specified MATLAB function once and immediately on
behalf of the specified module instance.

Note The matlabtbeval command executes the MATLAB function
immediately, while matlabtb provides several options for scheduling
MATLAB function execution.

5-18

matlabtbeval

Note For the HDL simulator to establish a communication link with
MATLAB, the MATLAB hdldaemon must be running with the same
communication mode and, if appropriate, the same TCP/IP socket port
as you specify with the matlabtbeval command.

Examples This example starts the HDL simulator client component of the
link software, associates an instance of the module myfirfilter with
the function myfirfilter.m, and uses a local TCP/IP socket-based
communication link to TCP/IP port 4449 to execute the function
myfirfilter.m:

> matlabtbeval myfirfilter -socket 4449:

5-19

nomatlabtb

Purpose End active MATLAB test bench and MATLAB component sessions

Syntax nomatlabtb

Description The nomatlabtb command ends all active MATLAB test bench and
MATLAB component sessions that were previously initiated by
matlabtb or matlabcp commands.

Examples The following command ends all MATLAB test bench and MATLAB
component sessions:

> nomatlabtb

See Also matlabtb, matlabcp

5-20

6

EDA Simulator Link™ IN
Simulink® Block Reference

HDL Cosimulation

Purpose Cosimulate hardware component by communicating with HDL module
instance executing in HDL simulator

Library EDA Simulator Link IN

Description

The HDL Cosimulation block cosimulates a hardware component by
applying input signals to and reading output signals from an HDL
model under simulation in the HDL simulator. You can use this block
to model a source or sink device by configuring the block with input
or output ports only.

The tabbed panes on the block’s dialog box let you configure:

• Block input and output ports that correspond to signals (including
internal signals) of an HDL module. You must specify a sample
time for each output port; you can also specify a data type for each
output port.

• Type of communication and communication settings used to exchange
data between simulators.

• The timing relationship between units of simulation time in Simulink
and the HDL simulator.

• Rising-edge or falling-edge clocks to apply to your model. You can
specify the period for each clock signal.

• Tcl commands to run before and after the simulation.

The Ports pane provides fields for mapping signals of your HDL design
to input and output ports in your block. The signals can be at any level
of the HDL design hierarchy.

6-2

HDL Cosimulation

The Timescales pane lets you choose an optimal timing relationship
between Simulink and the HDL simulator. You can configure either a
relative timing relationship (Simulink seconds correspond to an HDL
simulator-defined tick interval) or an absolute timing relationship
(Simulink seconds correspond to an absolute unit of HDL simulator
time).

The Connection pane specifies the communications mode used
between Simulink and the HDL simulator. If you use TCP socket
communication, this pane provides fields for specifying a socket port
and for the host name of a remote computer running the HDL simulator.
The Connection pane also provides the option for bypassing the
cosimulation block during Simulink simulation.

The Clocks pane lets you create optional rising-edge and falling-edge
clocks that apply stimuli to your cosimulation model.

The Tcl pane provides a way of specifying tools command language (Tcl)
commands to be executed before and after the HDL simulator simulates
the HDL component of your Simulink model. The Pre-simulation
commands field on this pane is particularly useful for simulation
initialization and startup operations, but it cannot be used to change
simulation state.

Note You must make sure that signals being used in cosimulation
have read/write access (this is done through the HDL simulator—see
product documentation for details). This rule applies to all signals on
the Ports, Clocks, and Tcl panes.

Dialog
Box

The Block Parameters dialog box consists of the following tabbed panes
of configuration options:

• “Ports Pane” on page 6-4

• “Connection Pane” on page 6-10

• “Timescales Pane” on page 6-14

6-3

HDL Cosimulation

• “Clocks Pane” on page 6-16

• “Tcl Pane” on page 6-19

Ports Pane

Specify fields for mapping signals of your HDL design to input and
output ports in your block. Simulink deposits an input port signal on an
HDL simulator signal at the signal’s sample rate. Conversely, Simulink
reads an output port signal from a specified HDL simulator signal at
the specified sample rate.

In general, Simulink handles port sample periods as follows:

• If an input port is connected to a signal that has an explicit sample
period, based on forward propagation, Simulink applies that rate
to the port.

• If an input port is connected to a signal that does not have an explicit
sample period, Simulink assigns a sample period that is equal to
the least common multiple (LCM) of all identified input port sample
periods for the model.

• After Simulink sets the input port sample periods, it applies
user-specified output sample times to all output ports. An explicit
sample time must be specified for each output port.

In addition to specifying output port sample times, you can force
the fixed point data types on output ports. For example, setting the
Data Type property of an 8-bit output port to Signed and setting its
Fraction Length property to 5 would force the data type to sfix8_En5.

(Note, however, that can not force width; the width is always inherited
from the HDL simulator.)

6-4

HDL Cosimulation

Note The Data Type and Fraction Length properties apply only to
the following signals:

• VHDL signals of any logic type, such asSTD_LOGIC or
STD_LOGIC_VECTOR

• Verilog signals of wire or reg type

Input/output ports can be set here as well; specify port as both input
and output.

The list at the center of the pane displays HDL signals corresponding to
ports on the HDL Cosimulation block.

Maintain this list with the buttons on the left of the pane:

6-5

HDL Cosimulation

• Auto Fill — Transmit a port information request to the HDL
simulator. The port information request returns port names and
information from an HDL model (or module) under simulation in the
HDL simulator, and automatically enters this information into the
ports list. See “Obtaining Signal Information Automatically from
the HDL Simulator” on page 3-35 for a detailed description of this
feature.

• New — Add a new signal to the list and select it for editing.

• Delete — Remove a signal from the list.

• Up — Move the selected signal up one position in the list.

• Down — Move the selected signal down one position in the list.

To commit edits to the Simulink model, you must also click Apply.

Note When importing VHDL signals, signal names are returned in
all capitals.

To edit the a signal name, double-click on the name. Set the signal
properties on the same line and in the appropriate columns. The
properties of a signal are as follows.

Full HDL Name
Specifies the signal path name, using the HDL simulator path
name syntax. For example, a path name for an input port might
be manchester.samp. The signal can be at any level of the HDL
design hierarchy. The HDL Cosimulation block port corresponding
to the signal is labeled with the Full HDL Name.

For rules on specifying signal/port and module path specifications
in Simulink, see “Specifying HDL Signal/Port and Module Paths
for Cosimulation” on page 3-29.

6-6

HDL Cosimulation

Note You can copy signal path names directly from the HDL
simulator wave window and paste them into the Full HDL
Name field, using the standard copy and paste commands in the
HDL simulator and Simulink (as long as you use the ‘Path.Name’
view and not ‘Db::Path.Name’ view). After pasting a signal path
name into the Full HDL Name field, you must click the Apply
button to complete the paste operation and update the signal list.

I/O Mode
Select either Input, Output, or both.

Input designates signals of your HDL module that are to be
driven by Simulink. Simulink deposits values on the specified the
HDL simulator signal at the signal’s sample rate.

Note When you define a block input port, make sure that only
one source is set up to drive input to that signal. For example, you
should avoid defining an input port that has multiple instances. If
multiple sources drive input to a single signal, your simulation
model may produce unexpected results.

Output designates signals of your HDL module that are to be read
by Simulink. For output signals, you must specify an explicit
sample time. You can also specify a data type (except width), if
desired (see Date Type and Fraction Length in a following section).

Since Simulink signals do not have the semantic of tri-states
(there is no ’Z’ value), it is not meaningful to connect to a
bi-directional HDL signal directly. In order to interface with
bi-directional signals, you can interface to the input of the output
driver, the enable of the output driver, and the output of the
input driver. This leaves the actual tri-state buffer in HDL where

6-7

HDL Cosimulation

resolution functions can handle interfacing with other tri-state
buffers.

Sample Time
This property is enabled only for output signals. You must specify
an explicit sample time.

Sample Time represents the time interval between consecutive
samples applied to the output port. The default sample time
is 1. The exact interpretation of the output port sample time
depends on the settings of the Timescales pane of the HDL
Cosimulation block (see “Timescales Pane” on page 6-14). See also
“Representation of Simulation Time” on page 3-15.

Data Type
Fraction Length

These two related parameters apply only to output signals.

The Data Type property is enabled only for output signals. You
can direct Simulink to determine the data type, or you can assign
an explicit data type (with option fraction length). By explicitly
assigning a data type, you can force fixed point data types on
output ports of an HDL Cosimulation block.

The Fraction Length property specifies the size, in bits, of
the fractional part of the signal in fixed-point representation.
Fraction Length is enabled when the Data Type property is
not set to Inherit.

Output port data types are determined by the signal width and by
the Data Type and Fraction Length properties of the signal.

6-8

HDL Cosimulation

Note The Data Type and Fraction Length properties apply
only to the following signals:

• VHDL signals of any logic type, such as STD_LOGIC or
STD_LOGIC_VECTOR

• Verilog signals of wire or reg type

To assign a port data type, set the Data Type and Fraction
Length properties as follows:

• Select Inherit from the Data Type list if you want Simulink
to determine the data type.

Inherit is the default setting. When Inherit is selected, the
Fraction Length edit field is disabled.

Simulink always double checks that the word-length back
propagated by Simulink matches the word length queried from
the HDL simulator. If they don’t match an error is generated.
For example, if a Signal Specification block is connected to an
output, Simulink will force the data type specified by Signal
Specification block on the output port.

If Simulink cannot determine the data type of the signal
connected to the output port, it will query the HDL simulator
for the data type of the port. As an example, if the HDL
simulator returns the VHDL data type STD_LOGIC_VECTOR for a
signal of size N bits, the data type ufixN is forced on the output
port. (The implicit fraction length is 0.)

• Select Signed from the Data Type list if you want to explicitly
assign a signed fixed point data type. When Signed is selected,
the Fraction Length edit field is enabled. The port is assigned
a fixed point type sfixN_EnF, where N is the signal width and F
is the Fraction Length.

For example, if you specify Data Type as Signed and a
Fraction Length of 5 for a 16-bit signal, Simulink forces the

6-9

HDL Cosimulation

data type to sfix16_En5. For the same signal with a Data
Type set to Signed and Fraction Length of -5, Simulink
forces the data type to sfix16_E5.

• Select Unsigned from the Data Type list if you want to
explicitly assign an unsigned fixed point data type When
Unsigned is selected, the Fraction Length edit field is
enabled. The port is assigned a fixed point type ufixN_EnF,
where N is the signal width and F is the Fraction Length.

For example, if you specify Data Type as Unsigned and a
Fraction Length of 5 for a 16-bit signal, Simulink forces the
data type to ufix16_En5. For the same signal with a Data
Type set to Unsigned and Fraction Length of -5 , Simulink
forces the data type to ufix16_E5.

Connection Pane

This figure shows the default configuration of the Connection pane.
By default, the block is configured for shared memory communication
between Simulink and the HDL simulator, running on a single
computer.

6-10

HDL Cosimulation

If you select TCP/IP socket mode communication, the pane displays
additional properties, as shown in the following figure.

6-11

HDL Cosimulation

Connection Mode
If you want to bypass the HDL simulator when running a
Simulink simulation, use these options to specify what type of
simulation connection you want. Select one of the following:

• Full Simulation: Confirm interface and run HDL simulation
(default).

• Confirm Interface Only: Connect to the HDL simulator and
check for proper signal names, dimensions, and data types, but
do not run HDL simulation.

• No Connection: Do not communicate with the HDL simulator.
The HDL simulator does not need to be started.

With the 2nd and 3rd options, the EDA Simulator Link™ IN
cosimulation interface does not communicate with the HDL
simulator during Simulink simulation.

6-12

HDL Cosimulation

The HDL Simulator is running on this computer
Select this option if you want to run Simulink and the HDL
simulator on the same computer. When both applications run on
the same computer, you have the choice of using shared memory
or TCP sockets for the communication channel between the two
applications. If this option is deselected, only TCP/IP socket mode
is available, and the Connection method list is disabled.

Connection method
This list is enabled when The HDL Simulator is running on
this computer is selected. Select Socket if you want Simulink
and the HDL simulator to communicate via a designated TCP/IP
socket. Select Shared memory if you want Simulink and the
HDL simulator to communicate via shared memory. For more
information on these connection methods, see “Communicating
with MATLAB or Simulink and the HDL Simulator” on page 1-8.

Host name
If Simulink and the HDL simulator are running on different
computers, this text field is enabled. The field specifies the host
name of the computer that is running your HDL simulation in
the HDL simulator.

Port number or service
Indicate a valid TCP socket port number or service for your
computer system (if not using shared memory). For information
on choosing TCP socket ports, see “Choosing TCP/IP Socket Ports”
on page C-2.

Show connection info on icon
When this option is selected, Simulink indicates information
about the selected communication method and (if applicable)
communication options information on the HDL Cosimulation
block icon. If shared memory is selected, the icon displays the
string SharedMem. If TCP socket communication is selected,
the icon displays the host name and port number in the format
hostname:port.

6-13

HDL Cosimulation

In a model that has multiple HDL Cosimulation blocks, with each
communicating to different instances of the HDL simulator in
different modes, this information helps to distinguish between
different cosimulation sessions.

Timescales Pane

The Timescales pane of the HDL Cosimulation block parameters
dialog lets you choose a timing relationship between Simulink and the
HDL simulator. The following figure shows the default settings of the
Timescales pane.

The Timescales pane specifies a correspondence between one second of
Simulink time and some quantity of HDL simulator time. This quantity
of HDL simulator time can be expressed in one of the following ways:

6-14

HDL Cosimulation

• In relative terms (i.e., as some number of HDL simulator ticks). In
this case, the cosimulation is said to operate in relative timing mode.
Relative timing mode is the default.

To use relative mode, select Tick from the list on the right, and enter
the desired number of ticks in the edit box. For example, in the
figure below the Timescales pane is configured for a relative timing
correspondence of 10 HDL simulator ticks to 1 Simulink second.

• In absolute units (such as milliseconds or nanoseconds). In this case,
the cosimulation is said to operate in absolute timing mode.

To use absolute mode, select a unit of absolute time (available units
are fs, ps, ns, us, ms, s) from the list on the right. Then enter
a scale factor in the left-side edit box. For example, in the figure
below the Timescales pane is configured for an absolute timing
correspondence of 1 HDL simulator second to 1 Simulink second.

For more information on calculating relative and absolute timing
modes, see “Defining the Simulink and HDL Simulator Timing
Relationship” on page 3-16.

For detailed information on the relationship between Simulink and the
HDL simulator during cosimulation, and on the operation of relative

6-15

HDL Cosimulation

and absolute timing modes, see “Representation of Simulation Time”
on page 3-15.

Clocks Pane

Create optional rising-edge and falling-edge clocks that apply stimuli
to your cosimulation model using the Clocks pane of the HDL
Cosimulation block. You can either specify an explicit period for each
clock, or accept a default period of 2. Simulink attempts to create a
clock that has a 50% duty cycle and a predefined phase that is inverted
for the falling edge case.

Whether you have configured the Timescales pane for relative timing
mode or absolute timing mode, the following restrictions apply to clock
periods:

• If you specify an explicit clock period, you must enter a sample time
equal to or greater than 2 resolution units (ticks).

• If the clock period (whether explicitly specified or defaulted) is not an
even integer, Simulink cannot create a 50% duty cycle, and therefore
the EDA Simulator Link IN software creates the falling edge at

clockperiod / 2

(rounded down to the nearest integer).

The following figure shows a timing diagram that includes rising-edge
and falling-edge clocks with a Simulink sample period of T=10 and an
HDL simulator resolution limit of 1 ns. The figure also shows that given
those timing parameters, the clock duty cycle is 50%.

6-16

HDL Cosimulation

6	��

27:	����	'����

)����
	�

�	'����

��������	������	#����
;	!<67

���	���������)���������	�����

�

&�����
	�

�	'����

For more information on calculating relative and absolute timing modes,
see “Defining the Simulink and HDL Simulator Timing Relationship”
on page 3-16 .

6-17

HDL Cosimulation

The scrolling list at the center of the pane displays HDL clocks that
drive values to the HDL signals that you are modeling, using the
deposit method.

Maintain the list of clock signals with the buttons on the left of the pane:

• New — Add a new clock signal to the list and select it for editing.

• Delete — Remove a clock signal from the list.

• Up — Move the selected clock signal up one position in the list.

• Down — Move the selected clock signal down one position in the list.

To commit edits to the Simulink model, you must also click Apply.

To edit the name of a clock signal, double-click it and enter the correct
name. To edit the properties of a clock signal, select the appropriate
property in that signal row. The properties of a clock signal are

Full HDL Name
Specify each clock as a signal path name, using the HDL simulator
path name syntax. A sample path name for a clock might be
manchester.clk.

For information about and requirements for path specifications
in Simulink, see “Specifying HDL Signal/Port and Module Paths
for Cosimulation” on page 3-29.

Note You can copy signal path names directly from the HDL
simulator wave window and paste them into the Full HDL
Name field, using the standard copy and paste commands in the
HDL simulator and Simulink (as long as you use the ‘Path.Name’
view and not ‘Db::Path.Name’ view). After pasting a signal path
name into the Full HDL Name field, you must click the Apply
button to complete the paste operation and update the signal list.

6-18

HDL Cosimulation

Edge
Select Rising or Falling to specify either a rising-edge clock or a
falling-edge clock.

Period
You must either specify the clock period explicitly, or accept the
default period of 2.

If you specify an explicit clock period, you must enter a sample
time equal to or greater than 2 resolution units (ticks).

If the clock period (whether explicitly specified or defaulted) is
not an even integer, Simulink cannot create a 50% duty cycle,
and therefore the EDA Simulator Link IN software creates the
falling edge at

clockperiod / 2

(rounded down to the nearest integer).

Note Vectored signals in the Clocks pane are not supported. Signals
must be logic types with ’1’ and ’0’ values.

Tcl Pane

Specify tools command language (Tcl) commands to be executed before
and after the HDL simulator simulates the HDL component of your
Simulink model

6-19

HDL Cosimulation

Pre-simulation commands
Contains Tcl commands to be executed before the HDL simulator
simulates the HDL component of your Simulink model. You can
specify one Tcl command per line in the text box, or enter multiple
commands per line by appending each command with a semicolon
(;), the standard Tcl concatenation operator.

Alternatively, you can create an HDL simulator Tcl script that
lists Tcl commands and then specify that file with the HDL
simulator source command as follows:

source mycosimstartup.script_extension

Use of this field can range from something as simple as a
one-line echo command to confirm that a simulation is running
to a complex script that performs an extensive simulation
initialization and startup sequence.

6-20

HDL Cosimulation

Note The command string or Tcl script that you specify for this
parameter cannot include commands that load an HDL simulator
project or modify simulator state. For example, they cannot
include commands such as run, stop, or reset.

Post-simulation commands
Contains Tcl commands to be executed after the HDL simulator
simulates the HDL component of your Simulink model. You can
specify one Tcl command per line in the text box or enter multiple
commands per line by appending each command with a semicolon
(;), the standard Tcl concatenation operator.

Alternatively, you can create an HDL simulator Tcl script that
lists Tcl commands and then specify that file with the HDL
simulator source command as follows:

source mycosimcleanup.script_extension

6-21

HDL Cosimulation

Notes

• You can include the exit command in an after simulation Tcl
script to force the HDL simulator to shut down at the end of a
cosimulation session. To ensure that all other after simulation
Tcl commands specified for the model have an opportunity to
execute, specify all after simulation Tcl commands in a single
cosimulation block and place exit at the end of the command
string or Tcl script.

The following is an example of a Tcl script when the -gui
argument was used with hdlsimmatlab or hdlsimulink:

after 1000 {ncsim -submit exit}

This next example is of a Tcl exit script to use when the -tcl
argument was used with hdlsimmatlab or hdlsimulink:

after 1000 {exit}

• With the exception of exit, the command string or Tcl script
that you specify cannot include commands that load an HDL
simulator project or modify simulator state. For example, they
cannot include commands such as run, stop, or reset.

6-22

To VCD File

Purpose Generate value change dump (VCD) file

Library EDA Simulator Link IN

Description
The To VCD File block generates a VCD file that contains information
about changes to signals connected to the block’s input ports and names
the file with the specified file name. VCD files can be useful during
design verification. Some examples of how you might apply VCD files
include the following cases:

• For comparing results of multiple simulation runs, using the same or
different simulator environments

• As input to post-simulation analysis tools

• For porting areas of an existing design to a new design

In addition, VCD files include data that can be graphically displayed or
analyzed with postprocessing tools. Examples of postprocessing include
the extraction of data pertaining to a particular section of a design
hierarchy or data generated during a specific time interval.

Using the Block Parameters dialog box, you can specify the following:

• The file name to be used for the generated file

• The number of block input ports that are to receive signal data

• The timescale to relate Simulink sample times with HDL simulator
ticks

VCD files can grow very large for larger designs or smaller designs
with longer simulation runs. However, the size of a VCD file generated

6-23

To VCD File

by the To VCD File block is limited only by the maximum number of
signals (and symbols) supported, which is 943 (830,584).

For a description of the VCD file format, see “VCD File Format” on
page 6-26.

Note The toVCD block is integrated into the Simulink Signal & Scope
Manager. See the Simulink User’s Guide for more information on using
the Signal & Scope Manager.

Dialog
Box

VCD file name
The file name to be used for the generated VCD file. If you specify
a file name only, Simulink places the file in your current MATLAB
directory. Specify a complete path name to place the generated file

6-24

To VCD File

in a different location. If you specify the same name for multiple
To VCD File blocks, Simulink automatically adds a numeric
postfix to identify each instance uniquely.

Note If you want the generated file to have a .vcd file type
extension, you must specify it explicitly.

Do not give the same file name to different VCD blocks. Doing
so results in invalid VCD files.

Number of input ports
The number of block input ports on which signal data is to be
collected. The block can handle up to 943 (830,584) signals, each of
which maps to a unique symbol in the VCD file.

In some cases, a single input port maps to multiple signals
(and symbols). This occurs when the input port receives a
multi-dimensional signal.

Because multi-dimensional signals are not part of the VCD
specification, they are flattened to a 1D vector in the file.

Timescale
Choose an optimal timing relationship between Simulink and
the HDL simulator.

The timescale options specify a correspondence between one
second of Simulink time and some quantity of HDL simulator
time. This quantity of HDL simulator time can be expressed in
one of the following ways:

• In relative terms (i.e., as some number of HDL simulator ticks).
In this case, the cosimulation is said to operate in relative
timing mode. Relative timing mode is the default.

6-25

To VCD File

To use relative mode, select Tick from the pop-up list at the
label in the HDL simulator, and enter the desired number of
ticks in the edit box at 1 second in Simulink corresponds
to. The default value is 1 Tick.

• In absolute units (such as milliseconds or nanoseconds). In
this case, the cosimulation is said to operate in absolute timing
mode.

To use absolute mode, select the desired resolution unit from
the pop-up list at the label in the HDL simulator (available
units are fs, ps, ns, us, ms, s), and enter the desired number
of resolution units in the edit box at 1 second in Simulink
corresponds to. Then, set the value of the HDL simulator
tick by selecting 1, 10, or 100 from the pop-up list at 1 HDL
Tick is defined as and the resolution unit from the pop-up
list at defined as.

VCD File
Format

The format of generated VCD files adheres to IEEE Std 1364-2001. The
following table describes the format.

Generated VCD File Format

File Content Description

$date
23-Sep-2003 14:38:11
$end

Data and time the file
was generated.

$version EDA Simulator Link IN
version
1.0 $ end

Version of the VCD
block that generated
the file.

6-26

To VCD File

Generated VCD File Format (Continued)

File Content Description

$timescale 1 ns $ end
The time scale that
was used during the
simulation.

$scope module manchestermodel $end
The scope of the module
being dumped.

$var wire 1 ! Original Data [0] $end

$var wire 1 " Recovered Clock [0] $end

$var wire 1 # Recovered Data [0] $end

$var wire 1 $ Data Validity [0] $end

Variable definitions.
Each definition
associates a signal with
character identification
code (symbol). The
symbols are derived
from printable
characters in the
ASCII character set
from ! to ~. Variable
definitions also include
the variable type (wire)
and size in bits.

$upscope $end
Marks a change to the
next higher level in the
HDL design hierarchy.

$enddefinitions $end
Marks the end of the
header and definitions
section.

#0
Simulation start time.

6-27

To VCD File

Generated VCD File Format (Continued)

File Content Description

$dumpvars
0!
0"
0#
0$

$end

Lists the values of all
defined variables at
time equals 0.

#630
1!

The starting point
of logged value
changes. Variable
values are checked
at each simulation
time increment and
are logged if a change
occurs. This entry
indicates that at 63
nanoseconds, the value
of signal Original
Data changed from 0
to 1.

6-28

To VCD File

Generated VCD File Format (Continued)

File Content Description

.

.

.
#1160
1#
1$

At 116 nanoseconds
the values of signals
Recovered Data
and Data Validity
changed from 0 to 1.

$dumpoff
x!
x"
x#
x$

$end

Marks the end of the
file by dumping the
values of all variables
as the value x.

6-29

To VCD File

6-30

A

VHDL and Verilog
Language Support

EDA Simulator Link™ IN VHDL
and Verilog Language Support
(p. A-2)

Describes EDA Simulator Link™ IN
support and support limitations for
VHDL and Verilog

A VHDL and Verilog Language Support

EDA Simulator Link™ IN VHDL and Verilog Language
Support

All EDA Simulator Link™ IN MATLAB functions and the HDL Cosimulation
block offer the same language-transparent feature set for both Verilog and
VHDL models.

EDA Simulator Link™ IN software also supports mixed-language HDL
models (models with both Verilog and VHDL components), allowing you
to cosimulate VHDL and Verilog signals simultaneously. However, only
Simulink® software can access components in different languages at any
level; MATLAB® software can access signals only with the language of the
top-level module instance or component. .

Mixed-Language Model Limitation
The Cadence® VHPI reports the incorrect simulator precision when simulating
mixed Verilog/VHDL design. (It is correct when in a pure VHDL design.) In a
mixed-HDL model, the VHPI always returns a precision of 1 fs. The actual
simulator precision is properly modified by -vhdl_time_precision, but the
returned value does not reflect that value in a mixed-HDL model.

You will get incorrect or non-running simulations if both the following
conditions exist:

• You have a mixture of VHDL and Verilog in your design AND you have set
-vhdl_time_precision to TP and TP != 1fs

• You also are cosimulating either of the following:

- Only VHDL signals and there is a Simulink sample time finer than TP
(after accounting for the cosimulation block timescale calculations)

- Both VHDL and Verilog signals and TP is coarser than the Verilog
time precision set by timescale or the -timescale command line and
there is a Simulink sample time finer than TP (after accounting for the
cosimulation block timescale calculations)

A-2

B

EDA Simulator Link™
IN Machine Configuration
Requirements

Valid Configurations For Using the
EDA Simulator Link™ IN Software
with MATLAB® Applications (p. B-2)

Describes how you choose the
number of clients and servers
and how they communicate when
using the EDA Simulator Link™
IN cosimulation interface with
MATLAB® software

Valid Configurations For Using the
EDA Simulator Link™ IN Software
with Simulink® Software (p. B-4)

Describes how you choose the
number of clients and servers
and how they communicate when
using the EDA Simulator Link
IN cosimulation interface with
Simulink® software

B EDA Simulator Link™ IN Machine Configuration Requirements

Valid Configurations For Using the EDA Simulator Link™
IN Software with MATLAB® Applications

The following list provides samples of valid configurations for using
theIncisive® HDL simulator and the EDA Simulator Link™ IN software with
MATLAB® software. The scenarios apply whether the HDL simulator is
running on the same or different computing system as the MATLAB software.
In a network configuration, you use an Internet address in addition to a
TCP/IP socket port to identify the servers in an application environment.

• An HDL simulator session linked to a MATLAB function foo through a
single instance of the MATLAB server

• An HDL simulator session linked to multiple MATLAB functions (for
example, foo and bar) through a single instance of the MATLAB server

• An HDL simulator session linked to a MATLAB function foo through
multiple instances of the MATLAB server (each running within the scope
of a unique MATLAB session)

• Multiple HDL simulator sessions each linked to a MATLAB function foo
through multiple instances of the MATLAB server (each running within
the scope of a unique MATLAB session)

• Multiple HDL simulator sessions each linked to a different MATLAB
function (for example, foo and bar) through the same instance of the
MATLAB server

• Multiple HDL simulator sessions each linked to MATLAB function foo
through a single instance of the MATLAB server

Although multiple HDL simulator sessions can link to the same MATLAB
function in the same instance of the MATLAB server, as this configuration
scenario suggests, such links are not recommended. If the MATLAB
function maintains state (for example, maintains global or persistent
variables), you may experience unexpected results because the MATLAB
function does not distinguish between callers when handling input and
output data. If you must apply this configuration scenario, consider
deriving unique instances of the MATLAB function to handle requests
for each HDL entity.

B-2

Valid Configurations For Using the EDA Simulator Link™ IN Software with MATLAB® Applications

Notes

• Shared memory communication is an option for configurations that require
only one communication link on a single computing system.

• TCP/IP socket communication is required for configurations that use
multiple communication links on one or more computing systems. Unique
TCP/IP socket ports distinguish the communication links.

• In any configuration, an instance of MATLAB can run only one instance of
the EDA Simulator Link IN MATLAB server (hdldaemon) at a time.

• In a TCP/IP configuration, the MATLAB server can handle multiple client
connections to one or more HDL simulator sessions.

B-3

B EDA Simulator Link™ IN Machine Configuration Requirements

Valid Configurations For Using the EDA Simulator Link™
IN Software with Simulink® Software

The following list provides samples of valid configurations for using the
Incisive® HDL simulator and the EDA Simulator Link™ IN software with
Simulink® software. The scenarios apply whether the HDL simulator is
running on the same or different computing system as the MATLAB or
Simulink products. In a network configuration, you use an Internet address
in addition to a TCP/IP socket port to identify the servers in an application
environment.

• An HDL Cosimulation block in a Simulink model linked to a single HDL
simulator session

• Multiple HDL Cosimulation blocks in a Simulink model linked to the same
HDL simulator session

• An HDL Cosimulation block in a Simulink model linked to multiple HDL
simulator sessions

• Multiple HDL Cosimulation blocks in a Simulink model linked to different
HDL simulator sessions

Notes

• HDL Cosimulation blocks in a Simulink model can connect to the same or
different HDL simulator sessions.

• TCP/IP socket communication is required for configurations that use
multiple communication links on one or more computing systems. Unique
TCP/IP socket ports distinguish the communication links.

• Shared memory communication is an option for configurations that require
only one communication link on a single computing system.

B-4

C

TCP/IP Socket
Communication

Choosing TCP/IP Socket Ports
(p. C-2)

Contains instructions for selecting
TCP/IP socket ports

Specifying TCP/IP Values (p. C-5) Provides some examples of valid
TCP/IP values that can be used for
TCP/IP socket communication.

TCP/IP Services (p. C-6) Explains how using TCP/IP services
may help optimize your application

C TCP/IP Socket Communication

Choosing TCP/IP Socket Ports
Depending on your particular configuration (for example, when the MATLAB®

software and the HDL simulator reside on separate machines), when creating
an EDA Simulator Link™ IN MATLAB application or defining the block
parameters of an HDL Cosimulation block, you may need to identify the
TCP/IP socket port number or service name (alias) to be used for EDA
Simulator Link IN connections.

To use the TCP/IP socket communication, you must choose a TCP/IP socket
port number for the server component to listen on that is available in your
computing environment. Client components can connect to a specific server
by specifying the port number on which the server is listening. For remote
network configurations, the Internet address helps distinguish multiple
connections.

The socket port resource is associated with the server component of an EDA
Simulator Link IN configuration. That is, if you use MATLAB in a test bench
configuration, the socket port is a resource of the system running MATLAB. If
you use a Simulink® design in a cosimulation configuration, the socket port is
a resource of the system running the HDL simulator.

A TCP/IP socket port number (or alias) is a shared resource. To avoid potential
collisions, particularly on servers, you should use caution when choosing a
port number for your application. Consider the following guidelines:

• If you are setting up a link for MATLAB, consider the EDA Simulator Link
IN option that directs the operating system to choose an available port
number for you. To use this option, specify 0 for the socket port number.

• Choose a port number that is registered for general use. Registered ports
range from 1024 to 49151.

• If you do not have a registered port to use, review the list of assigned
registered ports and choose a port in the range 5001 to 49151 that is not in
use. Ports 1024 to 5000 are also registered, however operating systems use
ports in this range for client programs.

Consider registering a port you choose to use.

C-2

Choosing TCP/IP Socket Ports

• Choose a port number that does not contain patterns or have a known
meaning. That is, avoid port numbers that more likely to be used by others
because they are easier to remember.

• Do not use ports 1 to 1023. These ports are reserved for use by the Internet
Assigned Numbers Authority (IANA).

• Avoid using ports 49152 through 65535. These are dynamic ports that
operating systems use randomly. If you choose one of these ports, you risk a
potential port conflict.

• TCP/IP port filtering on either the client or server side can cause the EDA
Simulator Link IN interface to fail to make a connection.

In such cases the error messages displayed by the EDA Simulator Link IN
interface indicate the lack of a connection, but do not explicitly indicate the
cause. A typical scenario caused by port filtering would be a failure to start
a simulation in the HDL simulator, with the following warning displayed in
the HDL simulator if the simulation is restarted:

#MLWarn - MATLAB server not available (yet),
The entity 'entityname' will not be active

In MATLAB, checking the server status at this point indicates that the
server is running with no connections:

x=hdldaemon('status')
HDLDaemon server is running with 0 connections
x=

4449

C-3

C TCP/IP Socket Communication

Windows Users If you suspect that your chosen socket port is filtered, you
can check it as follows:

1 From the Windows Start menu, select Settings > Network Connections.

2 Select Local Area Connection from the Network and Dialup
Connections window.

3 From the Local Area Connection dialog, select Properties > Internet
Protocol (TCP/IP > Properties > Advanced > Options > TCP/IP
filtering > Properties.

4 If your port is listed in the TCP/IP filtering Properties dialog, you
should select an unfiltered port. The easiest way to do this is to specify 0 for
the socket port number to let the EDA Simulator Link IN software choose
an available port number for you.

C-4

Specifying TCP/IP Values

Specifying TCP/IP Values
Specifies TCP/IP socket communication for links between the HDL simulator
and Simulink® software. For TCP/IP socket communication on a single
computing system, the tcp_spec can consist of just a TCP/IP port number
or service name. If you are setting up communication between computing
systems, you must also specify the name or Internet address of the remote
host. The following table lists different ways of specifying tcp_spec.

Format Example

<port-num> 4449

<port-alias> matlabservice

<port-num>@<host> 4449@compa

<host>:<port-num> compa:4449

<port-alias>@<host-ia> matlabservice@123.34.55.23

C-5

C TCP/IP Socket Communication

TCP/IP Services
By setting up the MATLAB® server as a service, you can run the service in
the background, allowing it to handle different HDL simulator client requests
over time without you having to start and stop the service manually each time.
Although it makes less sense to set up a service for theSimulink® software
as you cannot really automate the starting of an HDL simulator service, you
might want to use a service with Simulink to reserve a TCP/IP socket port.

Services are defined in the etc/services file located on each computer;
consult the User’s Guide for your particular operating system for instructions
and more information on setting up TCP/IP services.

For remote connections, the service name must be set up on both the client
and server side. For example, if the service name is “matlabservice” and
you are performing a Windows-Linux cross-platform simulation, the service
name must appear in the service file on both the Windows machine and the
Linux machine.

C-6

D

Race Conditions in HDL
Simulators

Overview (p. D-2) Describes the problem of race
conditions in hardware simulation

Potential Race Conditions in
Simulink® Link Sessions (p. D-3)

Describes race conditions when
cosimulating with Simulink®

software and how to work around
them

Potential Race Conditions in
MATLAB® Link Sessions (p. D-5)

Describes race conditions when
cosimulating with MATLAB®

software and how to work around
them

Further Reading (p. D-6) Provides suggestions for further
study about race conditions in
hardware simulation

D Race Conditions in HDL Simulators

Overview
A well-known issue in hardware simulation is the potential for
nondeterministic results when race conditions are present. Because the HDL
simulator is a highly parallel execution environment, you must write the HDL
such that the results do not depend on the ordering of process execution.

Although there are well-known coding idioms for ensuring successful
simulation of a design under test, you must always take special care at the
testbench/DUT interfaces for applying stimulus and reading results, even in
pure HDL environments. For an HDL/foreign language interface, such as
with a Simulink® or MATLAB® link session, the problem is compounded if
there is no common synchronization signal, such as a clock coordinating the
flow of data.

D-2

Potential Race Conditions in Simulink® Link Sessions

Potential Race Conditions in Simulink® Link Sessions
All the signals on the interface of an HDL Cosimulation block in theSimulink®

library have an intrinsic sample rate associated with them. This sample
rate can be thought of as an implicit clock that controls the simulation time
at which a value change can occur. Because this implicit clock is completely
unknown to the HDL engine (that is, it is not an HDL signal), the times at
which input values are driven into the HDL or output values are sampled
from the HDL are asynchronous to any clocks coded in HDL directly, even if
they are nominally at the same frequency.

For Simulink value changes scheduled to occur at a specific simulation time,
the HDL simulator does not make any guarantees as to the order that value
change occurs versus some other blocking signal assignment. Thus, if the
Simulink values are driven/sampled at the same time as an active clock edge
in the HDL, there is a race condition.

For cases where your active HDL clock edge and your intrinsic Simulink
active clock edges are at the same frequency, you can ensure proper data
propagation by offsetting one of those edges. Because the Simulink sample
rates are always aligned with time 0, you can accomplish this offset by shifting
the active clock edge in the HDL off of time 0. If you are coding the clock
stimulus in HDL, use a delay operator ("after" or "#") to accomplish this offset.

When using a Tcl "force" command to describe the clock waveform, you can
simply put the first active edge at some nonzero time. Using a nonzero value
allows a Simulink sample rate that is the same as the fundamental clock rate
in your HDL. This example shows a 20 ns clock (so the Simulink sample
rates will also be every 20 ns) with an active positive edge that is offset
from time 0 by 2 ns:

Cadence> force top.clk = 1'b0 after 0 ns 1'b1 after 2 ns 1'b0 after 12 ns repeat 20 ns

For HDL Cosimulation Blocks with Clock panes, you can define the clock
period and active edge in that pane. The waveform definition places the
non-active edge at time 0 and the active edge at time T/2. This placement
ensures the maximum setup and hold times for a clock with a 50% duty cycle.

If the Simulink sample rates are at a different frequency than the HDL clocks,
then you must synchronize the signals between the HDL and Simulink as you

D-3

D Race Conditions in HDL Simulators

would do with any multiple time-domain design, even one in pure HDL. For
example, you can place two synchronizing flip-flops at the interface.

If your cosimulation does not include clocks, then you must also treat the
interfacing of Simulink and the HDL code as being between asynchronous
time domains. You may need to over-sample outputs to ensure that all data
transitions are captured.

D-4

Potential Race Conditions in MATLAB® Link Sessions

Potential Race Conditions in MATLAB® Link Sessions
When you use the -sensitivity, -rising_edge, or -falling_edge scheduling options
to matlabtb or matlabcp to trigger MATLAB® function calls, the propagation
of values follow the same semantics as a pure HDL design; you are guaranteed
that the triggers must occur before the results can be calculated. You still can
have race conditions, but they can be analyzed within the HDL alone.

However, when you use the -time scheduling option to matlabtb or matlabcp,
or use "tnext" within the MATLAB function itself, the driving of signal values
or sampling of signal values cannot be guaranteed in relation to any HDL
signal changes. It is as if the potential Simulink race conditions in that
time-based scheduling are like an implicit clock that is unknown to the HDL
engine and not visible by just looking at the HDL code.

The remedies are the same as for the Simulink signal interfacing: ensure the
sampling and driving of signals does not occur at the same simulation times
as the MATLAB function calls.

D-5

D Race Conditions in HDL Simulators

Further Reading
Problems interfacing designs from testbenches and foreign languages,
including race conditions in pure HDL environments, are well-known and
extensively documented. Some texts that describe these issues include:

• The documentation for each vendor’s HDL simulator product

• The HDL standards specifications

• Writing Testbenches: Functional Verification of HDL Models, Janick
Bergeron, 2nd edition, © 2003

• Verilog and SystemVerilog Gotchas, Stuart Sutherland and Don Mills,
© 2007

• SystemVerilog for Verification: A Guide to Learning the Testbench
Language Features, Chris Spear, © 2007

• Principles of Verifiable RTL Design, Lionel Bening and Harry D. Foster,
© 2001

D-6

Index

IndexA
Absolute timing mode 3-19
addresses, Internet C-2
application software 1-10
application specific integrated circuits

(ASICs) 1-3
applications 1-3

coding for EDA Simulator Link™ IN
software 2-4
overview of 2-4

programming with EDA Simulator Link™
IN software
overview of 2-4

arguments
for hdlsimmatlab command 5-2
for hdlsimulink command 5-3
for matlabcp command 5-5
for matlabtb command 5-11
for matlabtbeval command 5-17
for pingHdlSim function 4-16
for tclHdlSim function 4-18

array data types
conversions of 2-19
VHDL 2-9

array indexing
differences between MATLAB and

VHDL 2-19
arrays

converting to 2-25
indexing elements of 2-19
of VHDL data types 2-9

ASICs (application specific integrated
circuits) 1-3

Auto fill
in Ports pane of HDL Cosimulation block 6-2
using in Ports pane 3-34

B
behavioral model 1-3

BIT data type 2-9
conversion of 2-19
converting to 2-25

bit vectors
converting for MATLAB 2-23
converting to 2-25

BIT_VECTOR data type 2-9
conversion of 2-19
converting for MATLAB 2-23
converting to 2-25

block input ports parameter
description of 6-2

Block input ports parameter
mapping signals with 3-34

block latency 3-24
block library

description of 3-7
block output ports parameter

description of 6-2
Block output ports parameter

mapping signals with 3-34
block parameters

setting programmatically 3-50
Block Parameters dialog

for HDL Cosimulation block 3-33
block ports

mapping signals to 3-34
blocks

HDL Cosimulation
description of 6-2

To VCD File
description of 6-23

blocksets
for creating hardware models 3-5
for EDA applications 3-5
installing 1-13

breakpoints
setting in MATLAB 2-52

bypass
HDL Cosimulation block 3-46

Index-1

Index

C
Cadence Incisive or NC simulator

as required software 1-10
in EDA Simulator Link™ IN

environment 1-7
installing 1-13
invoking for use with EDA Simulator Link™

IN software 1-24
setting up during installation 1-13
starting from MATLAB 2-50
working with Simulink links to 1-7

callback specification 2-13
callback timing 2-39
-cancel option 5-11
CHARACTER data type 2-9

conversion of 2-19
client

for MATLAB and HDL simulator links 1-5
for Simulink and HDL simulator links 1-7

client/server environment
MATLAB and HDL simulator 1-5
Simulink and HDL simulator 1-7

clocks
specifying for HDL Cosimulation blocks 3-31

Clocks pane
configuring block clocks with 3-31
description of 6-2

column-major numbering 2-19
comm status field

checking with hdldaemon function 2-50
description of 4-3

commands, HDL simulator 5-1
See also HDL simulator commands

communication
configuring for blocks 3-46
initializing for HDL simulator and MATLAB

session 2-39
modes of 1-8
socket ports for C-2

communication channel

checking identifier for 2-50
communication modes

checking 2-50
specifying for Simulink links 3-56
specifying with hdldaemon function 2-48

Communications Blockset
as optional software 1-10
using for EDA applications 3-5

compilation, VHDL code 2-11
compiler, VHDL 2-11
component function

programming for HDL verification 2-13
configuration file

using with Cadence Incisive or NC simulator
ncsim 1-25

configurations
deciding on for MATLAB B-2
deciding on for Simulink B-4
MATLAB

multiple-link B-2
Simulink

multiple-link B-4
single-system for MATLAB B-2
single-system for Simulink B-4
valid for MATLAB and HDL simulator B-2
valid for Simulink and HDL simulator B-4

Connection pane
configuring block communication with 3-46
description of 6-2

connections status field
checking with hdldaemon function 2-50
description of 4-3

connections, link
checking number of 2-50
TCP/IP socket C-2

Continue button, MATLAB 2-52
Continue option, MATLAB 2-52
continuous signals 3-15
cosimulation

bypassing 3-46

Index-2

Index

controlling MATLAB
overview of 2-47

loading HDL modules for 3-56
logging changes to signal values during 3-52
starting MATLAB

overview of 2-47
starting with Simulink 3-57

cosimulation environment
MATLAB and HDL simulator 1-5
Simulink and HDL simulator 1-7

cosimulation output ports
specifying 3-43

Cosimulation timing
absolute mode 6-2
relative mode 6-2

D
data types

conversions of 2-19
converting for MATLAB 2-23
converting for the HDL simulator 2-25
HDL port

verifying 2-17
unsupported VHDL 2-9
VHDL port 2-9

dbstop function 2-52
dec2mvl function

description of 4-2
delta time 3-24
demos 1-29

for EDA Simulator Link™ IN 1-28
deposit

changing signals with 3-15
for iport parameter 2-13
with force commands 2-51

design process, hardware 1-3
dialogs

for HDL Cosimulation block 6-2
for To VCD File block 6-23

discrete blocks 3-15
do command 3-49
DO files

specifying for HDL Cosimulation blocks 3-49
documentation

overview 1-28
double values

as representation of time 2-39
converting for MATLAB 2-23
converting for the HDL simulator 2-25

dspstartup M-file 3-25
duty cycle 3-31

E
EDA (Electronic Design Automation) 1-3
EDA Simulator Link™ IN

default libraries 1-19
EDA Simulator Link™ IN libraries

using 1-19
EDA Simulator Link™ IN software

block library
using to add HDL to Simulink with 3-7

definition of 1-3
installing 1-13
setting up the HDL simulator for 1-13
workflow for using with MATLAB 1-26
workflow for using with Simulink 1-27

Electronic Design Automation (EDA) 1-3
entities

coding for MATLAB verification 2-7
loading for cosimulation with Simulink 3-56
sample definition of 2-10

entities or modules
getting port information of 2-13

enumerated data types 2-9
conversion of 2-19
converting to 2-25

environment

Index-3

Index

cosimulation with MATLAB and HDL
simulator 1-5

cosimulation with Simulink and HDL
simulator 1-7

examples 3-5
dec2mvl function 4-2
hdldaemon function 4-3
hdlsimmatlab command 5-2
hdlsimulink command 5-3
matlabcp command 5-5
matlabtb command 5-11
matlabtbeval command 5-17
mvl2dec function 4-10
nclaunch function 4-11
nomatlabtb command 5-20
pingHdlSim function 4-16
tclHdlSim function 4-18
test bench function 2-28
See also Manchester receiver Simulink model

F
-falling option 5-11

specifying scheduling options with 2-39
falling-edge clocks

creating for HDL Cosimulation blocks 3-31
description of 6-2
specifying as scheduling options 2-39

Falling-edge clocks parameter
specifying block clocks with 3-31

field programmable gate arrays (FPGAs) 1-3
files

VCD 6-26
force command

applying simulation stimuli with 2-51
resetting clocks during cosimulation

with 3-57
FPGAs (field programmable gate arrays) 1-3
Frame-based processing 3-22

in cosimulation 3-22

performance improvements gained from 3-22
requirements for use of 3-22
restrictions on use of 3-22

functions 4-1
resolution 3-15
See also MATLAB functions

G
Go Until Cursor option, MATLAB 2-52

H
hardware description language (HDL). See HDL
hardware design process 1-3
hardware model design

creating in Simulink 3-5
running and testing in Simulink 3-27

HDL (hardware description language) 1-3
HDL cosimulation block

configuring ports for 3-34
opening Block Parameters dialog for 3-33

HDL Cosimulation block
adding to a Simulink model 3-7
black boxes representing 3-5
bypassing 3-46
configuration requirements for B-4
configuring clocks for 3-31
configuring communication for 3-46
configuring Tcl commands for 3-49
description of 6-2
design decisions for 3-5
handling of signal values for 3-14
in EDA Simulator Link™ IN

environment 1-7
scaling simulation time for 3-15
valid configurations for B-4

HDL entities
loading for cosimulation with Simulink 3-56

HDL models 1-3

Index-4

Index

adding to Simulink models 3-7
compiling 2-11
configuring Simulink for 3-25
cosimulation 1-3
debugging 2-11
porting 3-52
running in Simulink 3-57
testing in Simulink 3-57
verifying 1-3
See also VHDL models

HDL module
associating with link function 2-36

HDL modules
coding for MATLAB verification 2-7
getting port information of 2-13
loading for verification 2-12
naming 2-8
using port information for 2-17
validating 2-17
verifying port direction modes for 2-17

HDL simulator
handling of signal values for 3-14
initializing for MATLAB session 2-39
simulation time for 3-15
starting 1-24
starting for use with Simulink 3-56

HDL simulator commands 5-5
force

applying simulation stimuli with 2-51
resetting clocks during cosimulation

with 3-57
hdlsimmatlab

description of 5-2
loading HDL modules for verification

with 2-12
hdlsimulink

loading HDL modules for cosimulation
with 3-56

matlabcp
description of 5-5

matlabtb
description of 5-11
initializing HDL simulator with 2-39

matlabtbeval
description of 5-17
initializing HDL simulator with 2-39

nomatlabtb 5-20
run 2-52
specifying scheduling options with 2-39

HDL simulator running on this computer
parameter
description of 6-2

hdldaemon function
checking link status of 2-50
configuration restrictions for B-2
description of 4-3
starting 2-48

hdlsimdir property
with nclaunch function 4-11

hdlsimmatlab command
description of 5-2
loading HDL modules for verification

with 2-12
hdlsimulink command

description of 5-3
help

for EDA Simulator Link™ IN software 1-28
Host name parameter

description of 6-2
specifying block communication with 3-46

hostnames
identifying HDL simulator server 3-46
identifying MATLAB server 2-39
identifying server with C-2

I
IN direction mode 2-8

verifying 2-17
Incisive simulator commands

Index-5

Index

hdlsimmatlab
description of 5-2

hdlsimulink
description of 5-3

Incisive®

in EDA Simulator Link™ IN cosimulation
environment 1-5

working with MATLAB links to 1-5
INOUT direction mode 2-8

verifying 2-17
INOUT ports

specifying 6-2
input 2-8

See also input ports
input ports

attaching to signals 3-15
for HDL model 2-8
for MATLAB component function 2-13
for MATLAB link function 2-13
for MATLAB test bench function 2-13
for test bench function 2-13
mapping signals to 3-34
simulation time for 3-15

installation
of EDA Simulator Link™ IN software 1-13
of related software 1-13

installation of EDA Simulator Link™ IN 1-13
int64 values 2-39
INTEGER data type 2-9

conversion of 2-19
converting to 2-25

Internet address C-2
identifying server with C-2
specifying 2-39

interprocess communication identifier 2-50
ipc_id status field

checking with hdldaemon function 2-50
description of 4-3

iport parameter 2-13

K
kill option

description of 4-3

L
latency

block 3-24
clock signal 3-24

link function
associating with HDL module 2-36
matlabcp 2-12
matlabtb 2-12
matlabtbeval 2-12

link functions
coding for HDL verification 2-12
programming for HDL verification 2-13

link session. See link function
link status

checking MATLAB server 2-50
function for acquiring 4-3

links
MATLAB and HDL simulator 1-5
Simulink and HDL simulator 1-7

M
MATLAB

as required software 1-10
in EDA Simulator Link™ IN cosimulation

environment 1-5
installing 1-13
quitting 2-54
working with HDL simulator links to 1-5

MATLAB component functions
adding to MATLAB search path 2-48
defining 2-13
specifying required parameters for 2-13

MATLAB data types
conversion of 2-19

Index-6

Index

MATLAB functions 4-1
coding for HDL verification 2-12
dbstop 2-52
dec2mvl

description of 4-2
defining 2-13
hdldaemon 2-48

description of 4-3
mvl2dec

description of 4-10
naming 2-36
nclaunch 3-56

description of 4-11
pingHdlSim

description of 4-16
programming for HDL verification 2-12
sample of 2-28
scheduling invocation of 2-39
specifying required parameters for 2-13
tclHdlSim

description of 4-18
test bench 1-5
which 2-48

MATLAB link functions
defining 2-13
specifying required parameters for 2-13

MATLAB link sessions
controlling

overview 2-47
starting

overview 2-47
MATLAB search path 2-48
MATLAB server

checking link status with 2-50
configuration restrictions for B-2
configurations for B-2
function for invoking 1-5
identifying in a network configuration C-2
starting 2-48

MATLAB test bench functions

defining 2-13
specifying required parameters for 2-13

matlabcp command
description of 5-5

matlabtb command
description of 5-11
initializing HDL simulator for MATLAB

session 2-39
specifying scheduling options with 2-39

matlabtbeval command
description of 5-17
initializing HDL simulator for MATLAB

session 2-39
specifying scheduling options with 2-39

-mfunc option
specifying test bench function with 2-39
with matlabcp command 5-5
with matlabtb command 5-11
with matlabtbeval command 5-17

models
compiling VHDL 2-11
debugging VHDL 2-11

modes
communication 2-48
port direction 2-17

module names
specifying paths

for MATLAB link sessions 2-37
in Simulink 3-29 6-2

modules
coding for MATLAB verification 2-7
loading for verification 2-12
naming 2-8

multirate signals 3-22
mvl2dec function

description of 4-10

N
names

Index-7

Index

for HDL modules 2-8
for test bench functions 2-36
shared memory communication channel 2-50
verifying port 2-17

NATURAL data type 2-9
conversion of 2-19
converting to 2-25

nclaunch
using 1-24

nclaunch function
description of 4-11
starting HDL simulator with 2-50

ncsim
for the Cadence Incisive or NC simulator

using configuration file with 1-25
network configuration C-2
nomatlabtb command 5-20
Number of input ports parameter 6-23
Number of output ports parameter

description of 6-23
numeric data

converting for MATLAB 2-23
converting for the HDL simulator 2-25

O
online help

where to find it 1-28
oport parameter 2-13
options

for hdlsimulink command 5-3
for matlabcp command 5-5
for matlabtb command 5-11
for matlabtbeval command 5-17
kill 4-3
property

with hdldaemon function 4-3
with nclaunch function 4-11

status 4-3

OS platform. See EDA Simulator Link™
IN product requirements page on The
MathWorks web site

OUT direction mode 2-8
verifying 2-17

output ports
for HDL model 2-8
for MATLAB component function 2-13
for MATLAB link function 2-13
for MATLAB test bench function 2-13
for test bench function 2-13
mapping signals to 3-34
simulation time for 3-15

Output sample time parameter
description of 6-2
specifying sample time with 3-34

P
parameters

for HDL Cosimulation block 6-2
for To VCD File block 6-23
required for MATLAB component

functions 2-13
required for MATLAB link functions 2-13
required for MATLAB test bench

functions 2-13
required for test bench functions 2-13
setting programmatically 3-50

path specification
for ports/signals and modules

for MATLAB link sessions 2-37
in Simulink 3-29

for ports/signals and modules in Simulink
with HDL Cosimulation block 6-2

phase, clock 3-31
pingHdlSim function

description of 4-16
platform support

required 1-10

Index-8

Index

port names
specifying paths

for MATLAB link sessions 2-37
in Simulink 3-29

specifying paths in Simulink
with HDL Cosimulation block 6-2

verifying 2-17
Port number or service parameter

description of 6-2
specifying block communication with 3-46

port numbers C-2
checking 2-50
specifying for MATLAB server 2-48
specifying for the HDL simulator 2-39

portinfo parameter 2-13
portinfo structure 2-17
ports

getting information about 2-13
specifying direction modes for 2-8
specifying VHDL data types for 2-9
using information about 2-17
verifying data type of 2-17
verifying direction modes for 2-17

Ports pane
Auto fill option 6-2
configuring block ports with 3-34
description of 6-2
using Auto fill 3-34

ports, block
mapping signals to 3-34

Post- simulation command parameter
specifying block Tcl commands with 3-49

Post-simulation command parameter
description of 6-2

postprocessing tools 3-52
Pre-simulation command parameter

description of 6-2
specifying block simulation Tcl commands

with 3-49
prerequisites

for using EDA Simulator Link™ IN
software 1-10

properties
for hdldaemon function 4-3
for nclaunch function 4-11
for starting HDL simulator for use with

Simulink 3-56
for starting MATLAB server 2-48
nclaunchdir

with nclaunch function 4-11
socket 4-3
socketsimulink 4-11
startupfile 4-11
tclstart

with nclaunch function 4-11
time

description of 4-3
property option

for hdldaemon function 4-3
for nclaunch function 4-11

R
race conditions

in HDL simulation 3-24
rate converter 3-22
real data

converting for MATLAB 2-23
converting for the HDL simulator 2-25

REAL data type 2-9
conversion of 2-19
converting to 2-25

real values, as time 2-39
relative timing mode

definition of 3-17
operation of 3-17

-repeat option 5-5
specifying scheduling options with 2-39

requirements
application software 1-10

Index-9

Index

checking product 1-10
platform 1-10

resolution functions 3-15
resolution limit 2-17
-rising option 5-5

specifying scheduling options with 2-39
rising-edge clocks

creating for HDL Cosimulation blocks 3-31
description of 6-2
specifying as scheduling options 2-39

Rising-edge clocks parameter
specifying block clocks with 3-31

run command 2-52
Run option, MATLAB 2-52

S
sample periods 3-5

See also sample times
sample times 3-24

design decisions for 3-5
handling across simulation domains 3-14
specifying for block output ports 3-34

Sample-based processing 3-22
Save and Run option, MATLAB 2-52
scalar data types

conversions of 2-19
VHDL 2-9

scheduling options 2-39
script

HDL simulator setup 1-13
search path 2-48
sensitivity lists 2-39
-sensitivity option 5-5

specifying scheduling options with 2-39
server activation 4-3
server shutdown 4-3
server, MATLAB

checking link status of MATLAB 2-50
for MATLAB and HDL simulator links 1-5

for Simulink and HDL simulator links 1-7
identifying in a network configuration C-2
starting MATLAB 2-48

Set/Clear Breakpoint option, MATLAB 2-52
set_param

for specifying post-simulation Tcl
commands 3-49

shared memory communication 1-8
as a configuration option for MATLAB B-2
as a configuration option for Simulink B-4
for Simulink applications 3-56
specifying for HDL Cosimulation blocks 3-46
specifying with hdldaemon function 2-48

Shared memory parameter
description of 6-2
specifying block communication with 3-46

signal dataypes
specifying 3-43

signal names
specifying paths

for MATLAB link sessions 2-37
in Simulink 3-29

specifying paths in Simulink
with HDL Cosimulation block 6-2

signal path names
displaying 3-34
specifying for block clocks 3-31
specifying for block ports 3-34

Signal Processing Blockset
as optional software 1-10
using for EDA applications 3-5

signals
continuous 3-15
defining ports for 2-8
driven by multiple sources 3-15
exchanging between simulation

domains 3-14
handling across simulation domains 3-14
how Simulink drives 3-15
logging changes to 3-52

Index-10

Index

logging changes to values of 3-52
mapping to block ports 3-34
multirate 3-22
read/write access

mapping 3-34
required 3-15

read/write access required 6-2
signed data 2-23
SIGNED data type 2-25
simulation analysis 3-52
simulation time 2-13

guidelines for 3-15
representation of 3-15
scaling of 3-15

simulations
comparing results of 3-52
ending 2-54
logging changes to signal values during 3-52
quitting 2-54

simulator communication
options 3-27

simulator resolution limit 2-17
simulators

Cadence Incisive or NC simulator
starting from MATLAB 2-50

handling of signal values between 3-14
HDL simulator

initializing for MATLAB session 2-39
Simulink

as optional software 1-10
configuration restrictions for B-4
configuring for HDL models 3-25
creating hardware model designs with 3-5
driving cosimulation signals with 3-15
in EDA Simulator Link™ IN

environment 1-7
installing 1-13
running and testing hardware model in 3-27
simulation time for 3-15
starting the HDL simulator for use with 3-56

working with HDL simulator links to 1-7
Simulink Fixed Point

as optional software 1-10
using for EDA applications 3-5

Simulink models
adding HDL models to 3-7

sink device
adding to a Simulink model 3-7
specifying block ports for 3-34
specifying clocks for 3-31
specifying communication for 3-46
specifying Tcl commands for 3-49

socket numbers 2-50
See also port numbers

-socket option
specifying TCP/IP socket with 2-39
with hdlsimulink command 5-3
with matlabcp command 5-5
with matlabtb command 5-11
with matlabtbeval command 5-17

socket port numbers C-2
as a networking requirement C-2
checking 2-50
specifying for HDL Cosimulation blocks 3-46
specifying for TCP/IP link 3-56
specifying with -socket option 2-39

socket property
description of 4-3
specifying with hdldaemon function 2-48

sockets 1-8
See also TCP/IP socket communication

socketsimulink property
description of 4-11
specifying TCP/IP socket for HDL simulator

with 3-56
software

installing EDA Simulator Link™ IN 1-13
installing related application software 1-13
optional 1-10
required 1-10

Index-11

Index

source device
adding to a Simulink model 3-7
specifying block ports for 3-34
specifying clocks for 3-31
specifying communication for 3-46
specifying Tcl commands for 3-49

standard logic data 2-23
standard logic vectors

converting for MATLAB 2-23
converting for the HDL simulator 2-25

start time 3-15
startupfile property

description of 4-11
status option

checking value of 2-50
description of 4-3

status, link 2-50
STD_LOGIC data type 2-9

conversion of 2-19
converting to 2-25

STD_LOGIC_VECTOR data type 2-9
conversion of 2-19
converting for MATLAB 2-23
converting to 2-25

STD_ULOGIC data type 2-9
conversion of 2-19
converting to 2-25

STD_ULOGIC_VECTOR data type 2-9
conversion of 2-19
converting for MATLAB 2-23
converting to 2-25

Step button
MATLAB 2-52

Step-In button, MATLAB 2-52
Step-Out button, MATLAB 2-52
stimuli, block internal 3-31
stop time 3-15
strings, time value 2-39
subtypes, VHDL 2-9

T
Tcl commands

added to startup script via nclaunch 4-11
configuring for block simulation 3-49
configuring the HDL simulator to start

with 3-56
hdlsimmatlab 5-2
hdlsimulink 5-3
post-simulation

using set_param 3-49
pre-simulation

using set_param 3-49
specified in Tcl pane of HDL Cosimulation

block 6-2
Tcl pane

description of 6-2
tclHdlSim function

description of 4-18
tclstart property

with nclaunch function 4-11
TCP/IP networking protocol 1-8

as a networking requirement C-2
See also TCP/IP socket communication

TCP/IP socket communication
as a communication option for MATLAB B-2
as a communication option for Simulink B-4
for Simulink applications 3-56
mode 1-8
specifying with hdldaemon function 2-48

TCP/IP socket ports C-2
specifying for HDL Cosimulation blocks 3-46
specifying with -socket option 2-39

test bench functions
adding to MATLAB search path 2-48
coding for HDL verification 2-12
defining 2-13
naming 2-36
programming for HDL verification 2-13
sample of 2-28
scheduling invocation of 2-39

Index-12

Index

specifying required parameters for 2-13
test bench sessions

logging changes to signal values during 3-52
monitoring 2-52
restarting 2-54
running 2-52
stopping 2-54

The HDL simulator is running on this computer
parameter
specifying block communication with 3-46

time 3-15
callback 2-13
delta 3-24
simulation 2-13

guidelines for 3-15
representation of 3-15

See also time values
TIME data type 2-9

conversion of 2-19
converting to 2-25

time property
description of 4-3
setting return time type with 2-48

time scale, VCD file 6-26
time units 2-39
time values 2-39

specifying as scheduling options 2-39
specifying with hdldaemon function 2-48

Timescales pane
description of 6-2

timing errors 3-15
Timing mode

absolute 3-45
configuring for cosimulation 3-45
relative 3-45

tnext parameter 2-13
controlling callback timing with 2-39
specifying as scheduling options 2-39
time representations for 2-39

tnow parameter 2-13

To VCD File block
description of 6-23
uses of 1-7

tools, postprocessing 3-52
tscale parameter 2-17
tutorials 1-29

for EDA Simulator Link™ IN 1-28

U
unsigned data 2-23
UNSIGNED data type 2-25
unsupported data types 2-9
users

for EDA Simulator Link™ IN software 1-10

V
value change dump (VCD) files 3-52

See also VCD files
VCD file name parameter

description of 6-23
VCD files

format of 6-26
using 3-52

vcd2wlf command 3-52
vectors

converting for MATLAB 2-23
converting to 2-25

verification
coding test bench functions for 2-12

verification sessions
logging changes to signal values during 3-52
monitoring 2-52
restarting 2-54
running 2-52
stopping 2-54

Verilog data types
conversion of 2-19

Verilog modules

Index-13

Index

coding for MATLAB verification 2-7
VHDL data types

conversion of 2-19
VHDL entities

coding for MATLAB verification 2-7
sample definition of 2-10
verifying port direction modes for 2-17

VHDL models 1-3
compiling 2-11
debugging 2-11
See also HDL models

visualization
coding functions for 2-12

W
Wave Log Format (WLF) files 3-52

wave window, HDL simulator 3-34
waveform files 3-52
which function 2-48
WLF files 3-52
workflow

Cadence Incisive or NC Simulator with
MATLAB 2-2

Cadence Incisive or NC Simulator with
Simulink 3-2

EDA Simulator Link™ IN with
MATLAB 1-26

EDA Simulator Link™ IN with
Simulink 1-27

Z
zero-order hold 3-15

Index-14

	toc
	Getting Started
	Product Overview
	Integration with Other Products
	Linking with MATLAB and the HDL Simulator
	Linking with Simulink and the HDL Simulator
	Communicating with MATLAB or Simulink and the HDL Simulator

	Requirements
	What You Need to Know
	Required Products

	Setting Up Your Environment for the EDA Simulator Link IN Softwa
	Installing the Link Software
	Installing Related Application Software
	Setting Up the HDL Simulator for Use with the Link Software
	Using the Configuration and Diagnostic Script for UNIX/Linux
	Using the Configuration and Diagnostic Script with Windows

	Using the EDA Simulator Link IN Libraries
	Library Names
	Default Libraries
	Using an Alternative Library

	Starting the HDL Simulator
	Starting Cadence Incisive or NC simulator from MATLAB
	nclaunch Examples

	Starting the Incisive HDL Simulator from a Shell

	Workflow for Using the EDA Simulator Link IN Software with MATLA
	Workflow for Using the EDA Simulator Link IN Software with Simul
	Learning More About the EDA Simulator Link IN Software
	Documentation Overview
	Online Help
	Demos and Tutorials

	Linking MATLAB to Incisive Simulators
	MATLAB - Incisive Workflow
	Coding an EDA Simulator Link IN MATLAB Application
	Overview
	Process for Coding an EDA Simulator Link IN MATLAB Application
	Coding HDL Modules for MATLAB Verification
	Overview
	Choosing an HDL Module Name
	Specifying Port Direction Modes
	Specifying Port Data Types
	Sample VHDL Entity Definition
	Compiling and Debugging the HDL Model
	Loading an HDL Design for Verification

	Coding MATLAB Link Functions
	Process for Coding MATLAB Link Functions
	Defining Link Functions and Link Function Parameters
	Performing Data Type Conversions
	Examples

	Sample MATLAB Test Bench Function
	M-Function Example: manchester_decoder.m

	Associating a MATLAB Link Function with an HDL Module
	Overview
	Naming a MATLAB Link Function
	Associating the HDL Module Component with the MATLAB Link Functi
	Specifying HDL Signal/Port and Module Paths for MATLAB Link Sess
	Path Specifications for MATLAB Link Sessions with Verilog Top Le
	Path Specifications for MATLAB Link Sessions with VHDL Top Level

	Specifying TCP/IP Values
	Scheduling Options for a Link Session
	Scheduling Link Functions Using Link Function Parameters
	Scheduling Link Functions Using the tnext Parameter of an M-Func

	Running MATLAB Link Sessions
	Overview
	Process for Running MATLAB Link Sessions
	Placing a MATLAB Test Bench or Component Function on the MATLAB
	Starting the MATLAB Server
	Checking the MATLAB Server’s Link Status
	Starting Cadence Incisive or NC Simulator for Use with MATLAB
	Applying Stimuli with the HDL Simulator force Command
	Running a Link Session
	Restarting a Link Session
	Stopping a Link Session

	Linking Simulink to Incisive Simulators
	Simulink - Incisive Workflow
	Introduction to Cosimulation
	Creating a Hardware Model Design for Use in Simulink Application
	The EDA Simulator Link IN HDL Cosimulation Block
	Communicating Between the HDL Simulator and Simulink Software

	Preparing for Cosimulation
	Overview
	How Simulink Drives Cosimulation Signals
	Representation of Simulation Time
	Defining the Simulink and HDL Simulator Timing Relationship
	Relative Timing Mode
	Relative Timing Mode Example

	Absolute Timing Mode
	Timing Mode Usage Restrictions
	Setting HDL Cosimulation Port Sample Times

	Handling Multirate Signals
	Handling Frame-Based Signals
	Overview
	Using Frame-Based Processing

	Avoiding Race Conditions in HDL Simulation
	Block Simulation Latency
	Interfacing with Continuous Time Signals
	Setting Simulink Software Configuration Parameters
	Running and Testing a Hardware Model in Simulink

	Simulink and HDL Simulator Communication Options
	Starting the HDL Simulator

	Incorporating Hardware Designs into a Simulink Model
	Overview
	Specifying HDL Signal/Port and Module Paths for Cosimulation
	Path Specifications for Simulink Cosimulation Sessions with Veri
	Path Specifications for Simulink Cosimulation Sessions with VHDL

	Driving Clocks, Resets, and Enables
	Creating Optional Clocks

	Defining the Block Interface
	Mapping HDL Signals to Block Ports

	Specifying the Signal Datatypes
	Configuring the Simulink and Cadence Incisive or NC Simulator Ti
	Specifying a Relative Timing Relationship
	Specifying an Absolute Timing Relationship

	Configuring the Communication Link in the HDL Cosimulation Block
	Specifying Pre- and Post-Simulation Tcl Commands with HDL Cosimu
	Programmatically Controlling the Block Parameters
	Examples

	Adding a Value Change Dump (VCD) File

	Running Cosimulation Sessions
	Starting the HDL Simulator for Use with Simulink
	Loading an HDL Module for Cosimulation

	Determining an Available Socket Port Number
	Checking the Connection Status
	Managing a Simulink Cosimulation Session

	EDA Simulator Link IN MATLAB Function Reference
	EDA Simulator Link IN Command Extensions for the HDL Simulator R
	EDA Simulator Link IN Simulink Block Reference
	VHDL and Verilog Language Support
	EDA Simulator Link™ IN VHDL and Verilog Language Support
	Mixed-Language Model Limitation

	EDA Simulator Link IN Machine Configuration Requirements
	Valid Configurations For Using the EDA Simulator Link IN Softwar
	Valid Configurations For Using the EDA Simulator Link IN Softwar

	TCP/IP Socket Communication
	Choosing TCP/IP Socket Ports
	Specifying TCP/IP Values
	TCP/IP Services

	Race Conditions in HDL Simulators
	Overview
	Potential Race Conditions in Simulink Link Sessions
	Potential Race Conditions in MATLAB Link Sessions
	Further Reading

	Index

	tables
	HDL Port Information
	VHDL-to-MATLAB Data Type Conversions
	Verilog-to-MATLAB Data Type Conversions
	Required Data Conversions
	VHDL Conversions for the HDL Simulator
	Verilog Conversions for the HDL Simulator
	VHDL Example Port Definitions
	Simulation Scheduling Options
	Time Representations for tnext Parameter
	Generated VCD File Format

